Книга Укрощение бесконечности. История математики от первых чисел до теории хаоса, страница 23. Автор книги Йен Стюарт

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Укрощение бесконечности. История математики от первых чисел до теории хаоса»

Cтраница 23

Другие талантливые математики XV–XVI вв. сумели создать собственные тригонометрические таблицы, зачастую поражающие своей точностью. Георг Иоахим Ретик вычислил синусы для окружности с радиусом 1015, причем очень точно, вплоть до 15-го знака после запятой, но умножал все числа на 1015, чтобы получить целые значения – для всех кратных с шагом в одну секунду дуги. Он открыл закон для сферических треугольников:


Укрощение бесконечности. История математики от первых чисел до теории хаоса

а также закон для косинусов

cos a = cos b · cos c + sin b · sin c · cos A

в своем «Трактате о сферических треугольниках», написанном в 1562–1563 гг., но опубликованном только в 1596 г. Здесь буквы A, B и C обозначают углы треугольника, при этом а, b и c – его стороны, измеренные по углам, которые они образуют с центром сферы.

Виет создал много трудов по тригонометрии, из которых первым был «Математический канон», изданный в 1579 г. Он обобщил и систематизировал разные методы решения треугольников, а именно определение длины всех его сторон и величины углов исходя из другой информации о нем. Он открыл новые тригонометрические тождества, в том числе несколько интересных выражений для синусов и косинусов углов, кратных θ, представленных через синус и косинус угла θ.

Логарифмы

Второй темой этой главы были заявлены логарифмы, или log x, одна из важнейших функций в математике. Прежде всего они были важны, потому что удовлетворяли уравнению

log xy = log x + log y

и тем самым могли использоваться для преобразования умножения (очень трудоемкого действия) в сложение. Чтобы перемножить две величины x и y, сперва надо найти их логарифмы, сложить их и затем найти число, логарифм которого является результатом этого сложения (антилогарифм). Это и будет произведение ху.

Как только математики составили таблицы логарифмов, они стали доступны любому, кто знаком с методом. С XVI в. вплоть до середины XX в. практически все научные вычисления, особенно астрономические, использовали логарифмы. Однако уже с 1960-х электронные калькуляторы и компьютеры потеснили логарифмы, сделали их ненужными. Но сама концепция остается жизненно важной для математики: логарифмы прочно занимают ведущие роли во многих отраслях этой науки, включая исчисление и комплексный анализ. Кроме того, многие процессы в физике и биологии были описаны в логарифмических функциях.

Современный взгляд на логарифмы определяет их как функцию, обратную показательной. Используя логарифмы с основанием 10, что вполне естественно для десятичной системы счисления, мы говорим, что x является логарифмом y, если y = 10x. Например, поскольку 103 = 1000, логарифм 1000 (с основанием 10) равен 3. Главное свойство логарифмов определяется свойством показательной функции:

10a + b = 10a × 10b.

Но чтобы логарифмами можно было пользоваться, необходимо уметь найти соответствующий x для всякого положительного вещественного y. Согласно утверждению Ньютона и большинства ведущих ученых того времени, главная идея состояла в том, что любое рациональное число 10p/q можно определить как корень q-й степени из 10p. Поскольку любое вещественное число x может сколько угодно близко быть приближенным рациональным числом p/q, мы можем приблизить 10x с помощью 10p/q. Это не самый эффективный способ вычислить логарифм, но самый простой способ доказать его существование.

Исторически изобретение логарифмов шло совсем не так гладко. У его истоков стоит шотландец Джон Непер, барон Мерчистон. Он всю жизнь увлекался самыми эффективными методами вычислений и в итоге сам изобрел знаменитые палочки Непера (или кости Непера). Начиная с 1594 г. он переходит в более отвлеченную область науки, и ему потребовалось 20 лет, чтобы подготовить свой труд к публикации. Судя по всему, он начал исследования с геометрических прогрессий – последовательностей чисел, где каждое последующее является произведением предыдущего на один и тот же множитель. Например, возведение в степень числа 2:

1 2 4 8 16 32 …

или степени десятки:

1 10 100 1000 10 000 100 000 …

Уже давно было замечено, что сложение показателей степени эквивалентно перемножению степеней. Это удобно, если вы перемножаете две целые степени числа 2 или, например, две целые степени 10. Но между этими числами большой разрыв, и степени 2 или 10 не очень помогут, если придется перемножать, например, 57,681 и 29,443.

ПЛОСКАЯ ТРИГОНОМЕТРИЯ

В наши дни тригонометрия прежде всего развита на плоскости, где геометрия попроще и ее принципы легче понять. Можно только удивляться, как часто новые математические идеи возникают в сложном контексте, а последующие упрощения появляются гораздо позже. Существует теорема синусов и теорема косинусов для треугольников на плоскости, и они стоят того, чтобы на них остановиться. Рассмотрим плоский треугольник с углами А, B и С и противолежащими им сторонами a, b, с.

Тогда теорема синусов имеет следующий вид:

Укрощение бесконечности. История математики от первых чисел до теории хаоса

а теорема косинусов:

a2 = b2 + c2 − 2bc ⋅ cosA

(соответствующие формулы можно получить и для других углов). Мы можем использовать теорему косинусов для того, чтобы найти углы треугольника по его сторонам.

Укрощение бесконечности. История математики от первых чисел до теории хаоса

Стороны и углы треугольника


Логарифмы Непера

Пока доблестный барон упорно искал способ заполнить разрывы в геометрических прогрессиях, лейб-медик шотландского короля Якова VI Джеймс Крейг рассказал Неперу об открытии, широко известном в Дании, с громоздким названием «простаферезис». Он применялся к любому способу, который заменял умножение на сложение. Главный метод его практического применения был основан на формуле, открытой Виетом:


Укрощение бесконечности. История математики от первых чисел до теории хаоса
Вход
Поиск по сайту
Ищем:
Календарь
Навигация