Для полноты картины я должен еще подчеркнуть, что РНК-содержащие вирусы (как и ДНК-содержащие вирусы) не обладают все же абсолютно безграничной гибкостью и способностью к генетическим изменениям. Хотя РНК-содержащие вирусы со своей склонной к ошибкам репликацией обладают большой способностью к быстрому перебору генетических вариантов, все же их гибкость ограничена. Репликация на основе РНК накладывает сильные ограничения на величину генома. Чем больше РНК-геном, тем выше риск «катастрофы ошибок». Можно экспериментально показать, что геномы РНК-содержащих вирусов постоянно пребывают на грани катастрофы ошибок. Эволюция отрегулировала отношение между скоростью мутаций и длиной генома до оптимальной величины. В лабораторных условиях РНК-содержащие вирусы можно довести до вымирания, искусственно повысив скорость их мутаций. Это достигалось либо экспозицией к нуклеотидным аналогам, повышающим скорость мутаций, либо путем генетических манипуляций с РНК-полимеразой, которая делает больше ошибок при копировании (Crotty, Cameron, Andino, 2001; Crotty et al., 2000). Представляется, что частота ошибок около одной на 104 включенных последовательностей является максимальной, которую может перенести геном длиной около 10 тысяч оснований (в лаборатории ученые работали с вирусом полиомиелита). Отсюда следует, что любое изменение функциональности генома РНК-содержащих вирусов должно быть достигнуто без увеличения его размеров. Пространство мутаций, которым может пользоваться РНК-содержащий вирус, всегда должно быть соотнесено с ограниченным размером генома. Это ограничение кодирующей способности приводит к минимизации геномов, плотно упакованных информацией. Многие продукты генов ДНК-содержащих вирусов должны выполнять множество функций в течение жизненного цикла вируса и могут быть закодированы в перекрывающихся генах. Для РНК-содержащих вирусов еще более важно то, что функциональные роли играют как первичная, так и вторичная структура значительных частей генома. Первичная нуклеотидная последовательность сама по себе представляет информационное содержание и, следовательно, обладает собственной функциональностью. Такие функции «кодируются» в определенных нуклеотидных последовательностях или в складках цепи РНК, которые образуют более сложные вторичные структуры, стабилизируемые связями, образующимися между комплементарными нуклеотидами цепи. Этот «код» не является избыточным в обычном понимании, то есть синонимические мутации в этих участках невозможны. Любая замена нуклеотида приведет к изменению структуры РНК и к изменению фенотипа вируса. Таким образом, гибкость в определенной степени утрачивается, что ограничивает вариабельность РНК-содержащих вирусов. Они могут успешно развиваться, если сохраняют функциональность плотно конденсированной генетической информации, которая выполняет задачу репликации вируса, а также овладевает механизмами и структурами клетки-хозяина.
С другой стороны, надежность репликации генетического материала ДНК-содержащих вирусов устраняет ограничения, наложенные на длину генома. Многие лаборатории оценивают частоту ошибок при репликации ДНК-содержащих вирусов величиной в 1 на 108 включений нуклеотидов в новый геном (Drake, Hwang, 2005), то есть надежность репликации ДНК в десять тысяч раз превышает надежность репликации РНК-содержащих вирусов. При отсутствии других ограничительных факторов, таких как малый размер капсида, который может ограничить объем ДНК, который можно упаковать в инфекционную вирусную частицу (Chirico, Vianelli, Belshaw, 2010), ДНК-содержащие вирусы могут позволить себе массивные геномы, не подвергаясь риску катастрофы ошибок. Размер генома некоторых мелких ДНК-содержащих вирусов, таких как папилломавирусы и парвовирусы, может быть ограничен размерами их капсида. Такие вирусы располагают минимальными геномами, которыми распоряжаются с изумительной экономностью, зачастую кодируя многофункциональные белки и перекрывающиеся гены. К мелким ДНК-содержащим вирусам мы еще вернемся ниже в этой главе. Вирусы герпеса и ядерно-цитоплазматические крупные ДНК-содержащие вирусы, к которым относится вирус оспы (poxvirus), обладают намного большими геномами. Хотя у них нет способностью к генетической вариабельности, равной способности РНК-содержащих вирусов, им, с другой стороны, не нужно экономить на кодировании необходимых белков. Эти вирусы могут с большой выгодой для себя использовать роскошь расширенного генома. Для испытаний возможностей расширенного генного пространства и быстрой эволюционной адаптации вирусы герпеса используют разнообразные механизмы.
Дупликация и захват гена
Не следует игнорировать мутационные замещения нуклеотидов как источник генетической вариабельности вирусов, содержащих двухцепочечную ДНК, и, действительно, частота их мутаций на порядок выше, чем у клеток-хозяев (Li, 1997). Тем не менее для поддержания генетической вариабельности, необходимой для адаптивной эволюции, вирусы герпеса используют гибкость своих ДНК-геномов двумя дополнительными способами. Для поддержания гибкости генома вирусы герпеса прибегают к дупликации генов, а кроме того, умело используют захват гена (gene capture). Эти способности становятся очевидными при тщательном исследовании вирусов герпеса, особенно если принять во внимание их весьма разнообразные наборы неядерных генов (которые, вероятно, следует обозначать более удачным термином «адаптивные гены»). Концептуально будет полезным считать их дополнениями к базовой модели, которая способна обходиться исключительно ядерными генами; при этом каждый отдельный вирус герпеса получает гены, которые наилучшим образом приспосабливают его к конкретным клеткам-хозяевам. Чаще всего адаптивные гены возникают в качестве контрмеры в отношении действия защитных систем против вирусной инфекции. Эти защитные системы делятся на две части: врожденный иммунитет и клеточно-автономный иммунитет – первую линию клеточной защиты против вирусов и адаптивный иммунный ответ организма хозяина. Кроме того, должна быть обеспечена способность управлять метаболизмом клетки-хозяина для возможности репликации и поддержания вирулентности. Эти совокупности генов должны быть доступными для осуществления репликации вирусной ДНК, а это может потребовать от клетки активации определенных регуляторных систем, которые в норме используются для репликации клеточной ДНК и деления клеток. По определению, эти функции должны полностью соответствовать структуре и функции клетки-хозяина. Структуры, отвечающие за репликацию и деление, являются главным полем битвы между вирусом и хозяином, и именно здесь наиболее сильно давление отбора, приводящее к адаптивным изменениям вируса.
Эволюция геномов всех царств жизни использует дупликацию генов. Это очень мощный механизм развития новых функций у уже имеющихся генов. К настоящему времени накоплено множество данных о том, что рекомбинации приводят к дупликации генетического материала у всех вирусов герпеса (Davison, 2002; McGeoch, Rixon, Davison, 2006). Преимущества, возникающие благодаря дупликации генов, очевидны: создается вторая, избыточная копия гена. Эта копия может претерпевать адаптивную эволюцию, так как нет необходимости консервативного сохранения прежней функциональности исходного гена, кодировавшего какой-либо важный белок. Оставшийся неизменным ген продолжает кодировать продукты, необходимые для поддержания жизнеспособности линии вируса. Захват гена – это второй способ приобретения новой адаптивной функциональности геномами вирусов герпеса. Это горизонтальный перенос генов, с которым мы познакомились при обсуждении фагов и их хозяев – микробных клеток. Вирусы герпеса захватывают гены из хромосом клетки хозяина и включают эти гены в собственный геном. Точный механизм генного захвата пока неясен, но фрагменты ДНК клеток хозяина должны соединиться с геномной ДНК вируса, чтобы создать геном, содержащий новую генетическую информацию. Этот новый генетический материал часто передает вирусу полезные фенотипические признаки. Этот ген больше не подвергается давлению, оказываемому естественным отбором на организм хозяина, но развивается независимо и может изменяться, чтобы лучше выполнять новые функции вследствие случайных мутаций и под давлением отбора, действующего на вирусный геном.