Бете поручил Дайсону просчитать простой, «игрушечный» вариант Лэмбовского сдвига — для электрона без спина. Таким образом Дайсон смог бы найти быстрое решение актуальной проблемы, а Бете — продолжить свои изыскания. Дайсон видел, что расчеты, опубликованные Бете, были аферой, но аферой гениальной — очень грубое приближение, каким-то образом попавшее в точку. Он все чаще общался с Фейнманом, который постепенно перестал казаться ему представителем экзотического вида. Обедая у Бете, он наблюдал за тем, как дикий американец вскакивает из-за стола, чтобы поиграть с Генри, пятилетним сыном хозяина дома. Фейнман обожал детей своих друзей. Он развлекал их, болтая на тарабарском языке, жонглировал, изображал различные музыкальные инструменты, как человек-оркестр. Мог заворожить их одним простым действием: брал у кого-нибудь очки и медленно надевал их, а потом снимал и снова надевал. Или просто беседовал с ними. Как-то раз он спросил у Генри:
— Знаешь, что на каждое число есть другое число, вдвое больше?
— Неправда! — воскликнул Генри.
Фейнман ответил, что может это доказать.
— Назови число.
— Миллион!
— Два миллиона, — ответил Фейнман.
— Двадцать семь!
— Пятьдесят четыре, — ответил Фейнман, и так продолжалось до тех пор, пока Генри не уловил суть. Это было первым знакомством ребенка с понятием бесконечности.
Некоторое время, поскольку Фейнман не воспринимал свою работу всерьез, Дайсон относился к ней столь же несерьезно. В письмах родителям он называл Фейнмана «не то гением, не то шутом» (и впоследствии жалел об этих словах). Через несколько дней Дайсон услышал рассказ наведавшегося в Корнелл Вайскопфа об исследованиях Швингера в Гарварде. Он уловил связь между работой Швингера и тем, что говорил Фейнман, хотя последний оперировал совсем другими понятиями. За вспышками и необузданностью Фейнмана он начал замечать наличие метода. И в следующем письме родителям заговорил уже иначе:
«Фейнман — человек, чьи идеи понять столь же трудно, сколь легко понять идеи Бете. По этой причине до сих пор я гораздо большему учился у Бете, чем у него. Но, мне кажется, если я задержусь здесь подольше, то буду работать именно с Фейнманом».
Смутная картинка
Физикам казалось, что их трудности чисто математические: все эти бесконечности, расхождения, формальный подход. Но было еще одно скрытое препятствие, которое редко всплывало в опубликованных работах и устных обсуждениях, — невозможность визуализации. Разве возможно представить атом или электрон в момент излучения им света? Каким должен быть мысленный образ, способный помочь ученому, направив его размышления по верному пути? Первые квантовые парадоксы заставили физиков усомниться в своей способности к интуитивному пониманию, в своей интуиции вообще, и к началу 1940-х годов они почти перестали говорить о визуализации. Казалось, эта проблема больше из области психологии, чем физики.
Визуализация атома по Нильсу Бору — атом, представленный в виде миниатюрной Солнечной системы, — была отвергнута как не соответствующая истине. В 1923 году, на десятую годовщину разработки этой концепции, немецкий квантовый физик Макс Борн восхвалял ее: «Идея о том, что законы микрокосма отражают происходящее в большом мире, видится человеческому уму истинным волшебством». Но уже тогда Борн и его коллеги понимали, что модель Бора — анахронизм. Она выстояла, когда открыли угловой момент и спин, ее включили в стандартную программу по физике и химии для старших классов, но картинка электронов, вращающихся вокруг ядра, больше не соответствовала действительности. На смену ей пришли волны с резонансными модами
[126], вероятностно рассеянные частицы, операторы и матрицы, изменчивые пространства с дополнительными измерениями. Настал момент, когда физики решили полностью отказаться от идеи визуализации. Тон задал сам Бор. На вручении Нобелевской премии за свою модель атома он сказал, что пора отказаться от надежды описать атомную модель путем проведения аналогий с повседневными понятиями. «Мы должны умерить наши требования и довольствоваться формальными концепциями — формальными в том смысле, что они не снабжены визуальной информацией, привычной картинкой…» Такая смена позиции породила немало трений. «Чем больше я размышляю над физической стороной теории Шрёдингера, тем более отталкивающей ее нахожу, — заметил Гейзенберг в 1926 году в разговоре с Паули. — Попробуйте представить вращающийся электрон, чей заряд распространяется в пространстве по осям в четырех-пяти измерениях. То, что Шрёдингер пишет о возможности визуализировать его теорию… я считаю бредом». Как бы высоко ни ценился среди физиков навык концептуализации, который они называли интуицией, сколько бы ни говорилось о разнице физического и формального понимания, вывод напрашивался сам собой: не стоит доверять изображениям субатомной реальности, списанным с земного, повседневного опыта. Бейсбольные мячи, артиллерийские снаряды, планетоиды — квантовые физики-теоретики отвергли все эти модели, отказались от визуализации в виде колесиков и волнистых линий. Отец Фейнмана как-то спросил его (впоследствии Ричард много раз пересказывал эту историю): «Когда атом переходит из одного состояния в другое, он излучает частицу света, называемую фотоном. Это понятно. Фотон в атоме опережает время? Если да, то откуда он берется? Как излучается?» Ни у кого не было картинки, иллюстрирующей это явление — излучение света, взаимодействие материи и электромагнитного поля. А ведь оно было определяющим для квантовой электродинамики.
Вместо картинки возникла бездна — бурлящая, живая, полная вероятностей; неспокойный вакуум новой физики. Некоторые физики, не в силах подобрать даже приблизительный визуальный аналог происходящего в квантовом мире, обратились к новому виду философствования — парадоксальным мысленным экспериментам и спорам о реальности, сознании, причинности и измерении. К концу 1920-х годов эти споры стали неотъемлемым атрибутом интеллектуальной среды; они были провокационными и неразрешимыми и следовали за физикой, как облако пыли за автоколонной. Опубликованная в 1935 году работа Эйнштейна, Подольского и Розена — та самая, благодаря которой у семнадцатилетнего Швингера появился шанс произвести впечатление на Раби, — стала тому ярчайшим свидетельством. В ней приводились примеры двух квантовых систем — возможно, атомов, — связанных в прошлом взаимодействием частиц, но в данный момент разделенных большим расстоянием. Авторы показывали, что простое измерение одного атома из пары повлияет на результаты измерения второго, причем эффект будет мгновенным — быстрее света, то есть, по сути, ретроактивным. Эйнштейн считал, что это компрометирует законы квантовой механики. Бор и более молодые теоретики были настроены более оптимистично, отмечая, что Эйнштейн уже отнес представления о прошлом и о расстоянии в категорию понятий, о которых нельзя говорить с полной определенностью, в классическом духе. В том же ключе была выдержана теория о знаменитом коте Шрёдингера: бедное гипотетическое животное сидело в ящике с детектором, присоединенным к пузырьку с ядовитым газом, и его судьба, таким образом, зависела все от того же квантово-механического явления — излучения фотона атомом. Шрёдингер утверждал, что, несмотря на бойкие вероятностные расчеты ученых — в пятидесяти процентах случаев «да», в пятидесяти «нет», — они по-прежнему не могли визуализировать кота иначе как живым или мертвым.