Книга Креативный вид. Как стремление к творчеству меняет мир, страница 51. Автор книги Дэйвид Иглмен, Энтони Брандт

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Креативный вид. Как стремление к творчеству меняет мир»

Cтраница 51

Это детское упражнение полезно и взрослым. Например, в искусстве создание разных вариантов на основе одного источника — действенная практика для развития навыков трансформации, дезинтеграции и синтеза. Джазовые музыканты, импровизируя, выдают каждый раз множество вариаций. В визуальном искусстве повторение одного мотива способно принести хороший результат: от задания нарисовать яблоко до серии работ Джаспера Джонса, посвященных национальному флагу.


Креативный вид. Как стремление к творчеству меняет мир

Джаспер Джонс: «Три флага» (1958), «Флаг» (1967–1970), «Белый флаг» (1960), «Флаг» («Мораторий») (1969) и «Флаг» (1972/1994)


Создание альтернативных вариантов, кроме прочего, позволяет ученикам по достоинству оценить разнообразие природы, свойственное окружающему миру. Возьмем, к примеру, эксперимент Ботанического общества Америки под условным названием «Распространение семян» [187]. Сначала ученики знакомятся со способами распространения растений в природе: кокосы падают в воду и плывут по течению; семена лопуха цепляются за мех животных и «путешествуют» с ними; семена одуванчиков, как парашютики, разлетаются с порывами ветра; семена клена и ясеня, похожие на крылышки, планируют в воздухе. Затем дается задание придумать новые, более эффективные способы «путешествия» для крошечных семян. Ученики тестируют предложенные варианты и выделяют лучшие.

Упражнение помогает понять суть естественного отбора и связанных с ним трудностей. Вместо того чтобы воспринимать окружающий мир как набор предопределенных фактов, которые следует запомнить, ученики генерируют варианты того, что могло бы быть. Это главный навык будущего изобретателя, который оглядывается вокруг и создает новые решения. После участия в эксперименте Ботанического общества дети начинают ценить природу и ее замысел еще и потому, что сами попробовали себя в роли творцов.

Даже когда ответ однозначен, учеников следует подталкивать к поиску разных решений. В 1965 году Калифорнийский государственный комитет по образовательным программам предложил известному физику Ричарду Фейнману сделать обзор учебных пособий по математике («Пять с половиной метров книжных полок и 220 килограммов книг!» — писал он в своем отчете). По его мнению, современный метод преподавания, когда учитель предлагает ученикам единственное решение математической задачи, в корне неверен. Фейнман утверждал, что учеников следует побуждать искать как можно больше способов получения правильного ответа:

«Цель учебника арифметики не в том, чтобы показать один способ решения каждой задачи, а в том, чтобы объяснить суть проблемы и предоставить свободу для поиска ответа… Нужно отказаться от закостенелости в мышлении… Мысль должна быть свободна в поиске решения… Человек, успешно применяющий математические методы, — это, по сути, изобретатель новых способов получения ответов в заданных ситуациях» [188].

Когда ученики ищут альтернативные стратегии, следует поощрять их мыслить максимально широко. По аналогии с компанией, которая работает в диапазоне от скромных последовательных изменений до прогрессивных научно-исследовательских проектов, ученики должны уметь как оставаться рядом с источником, так и удаляться от него. Это поможет сформировать навыки, которые понадобятся для гибкого реагирования на нестандартные задачи в дальнейшем.

Принцип поэтапного удаления от источника наглядно иллюстрируют серии эскизов Пабло Пикассо и Роя Лихтенштейна с изображением быка. Оба художника начали с реалистичного изображения, а затем разошлись в разных направлениях: Пикассо оставил лишь основные линии, Лихтенштейн превратил источник в абстракцию из цветных геометрических фигур. Если посмотреть на финальные изображения в каждой серии, становится удивительно, насколько далеко они отстоят друг от друга.


Креативный вид. Как стремление к творчеству меняет мир

Бык. Серии эскизов Пикассо, 1946 год (слева) и Лихтенштейна, 1973 год (справа)


Роль широкого мышления продемонстрировал один из проектов в Университете Райса. Студентам предложили проанализировать критическую ситуацию в здравоохранении развивающихся стран, где ежегодно сотни тысяч детей умирают от обезвоживания, вызванного диареей. В малобюджетных клиниках есть капельницы для внутривенного вливания, но нет дорогостоящего оборудования для контроля дозировки. В больницах, где не хватает средств на тщательное наблюдение за всеми пациентами, дети подвергаются смертельному риску избыточной гидратации. Команда студентов из Университета Райса решила создать бюджетный вариант капельницы с системой контроля дозировки, которая устойчиво работала бы даже при перебоях с электричеством. Они начали с простых идей, лежавших на поверхности, но затем стали копать глубже и в итоге пришли к неожиданному решению — использовать мышеловку. Устройство представляло собой рычаг, к одному плечу которого крепился пакет для внутривенного вливания, а к другому — противовес. Медработник устанавливает нужную дозировку, подобрав правильный противовес. Когда доза введена, рычаг поворачивается, приводя в действие мышеловку, которая захлопывается и перекрывает доступ лекарства.

Студентам не терпелось проверить свою идею на практике, и они отправились в Лесото и Малави — страны, стремящиеся обеспечить адекватную медицинскую помощь населению. Врачи с энтузиазмом отнеслись к предложенной разработке, но побаивались мышеловки, опасаясь за свои пальцы. Студенты стали искать более безопасный способ перекрывать доступ лекарства. С помощью 3D-принтера они сделали пластиковый колпачок и экспериментировали с самыми разными предметами, которые валялись в лаборатории. Мышеловка работала лучше всего. Тогда они придумали менее угрожающую замену в виде стальной пружины.

В Малави обнаружился еще один недостаток конструкции: чтобы капельница работала правильно, пакет для внутривенного вливания крепился на уровне 1,5 м от головы пациента. Следовательно, и противовес должен был находиться на этой высоте, то есть это сильно осложняло работу медперсонала. В ходе мозгового штурма один из студентов предложил разделить рычаг на две части: поместить пакет для вливания высоко, противовес — низко и соединить их рейкой. Так регулировать противовес стало гораздо проще.

Студенты вернулись в Малави и провели исследование на месте: в среднем, чтобы обучить медперсонал пользоваться устройством, уходило менее двадцати минут, чтобы поставить такую капельницу пациенту, требовалось менее двух минут, и устройство работало исправно даже после нескольких сот применений [189]. Электрические капельницы для внутривенного вливания стоят порядка нескольких тысяч долларов каждая. Стоимость предложенного студентами устройства составляла восемьдесят долларов. Расширив диапазон возможностей при изучении задачи, они нашли решение проблемы, которая казалась неразрешимой.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация