Книга Происхождение Вселенной, страница 15. Автор книги Стивен Баттерсби

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Происхождение Вселенной»

Cтраница 15

Теория находит оправдание для их существования в том факте, что они согласуются с большим количеством отдельных наблюдений. Именно в этом заключается «правота» теории.


Как вы можете описать свою жизнь в 1910-х годах, во время изучения гравитационных волн?

В научной жизни у меня была небольшая передышка. Я изучал гравитационные волны, а совсем недавно начал изучать квантовую теорию излучения и поглощения света и причины возникновения подъемной силы летательных аппаратов.


Правда ли, что фактически вы нашли ошибку в вашей оригинальной статье 1916 года по теории относительности, в которой рассматривались гравитационные волны, и вам пришлось заново пересмотреть ее в 1918 году?

Важный вопрос о том, как распространяются гравитационные волны, был рассмотрен мной в научной статье полтора года назад. Однако я вынужден вернуться к этому предмету изучения, поскольку мое прежнее сообщение вызывает сомнения и, к сожалению, содержит прискорбную ошибку в вычислениях.


Все мы совершаем ошибки. Черные дыры также являются следствием теории относительности, хотя при вашей жизни немногие верили в их существование. Как бы вы искали гравитационные волны в ваше время?

Даже наблюдения динамических гравитационных полей, создаваемых вращением Земли и Солнца, тех полей, которые можно было бы наблюдать с помощью таких чувствительных индикаторов, как Луна и внутренние планеты, невозможно провести из-за их малой точности.


То есть надежды мало. Тогда скажите, что же такое эти самые гравитационные волны?

Я вам пришлю статью о волнах. Она очень хороша.


Спасибо, но я не Эйнштейн. Могли бы вы объяснить мне все это без уравнений?

Я сделаю это с большим удовольствием, потому что, к сожалению, существует некоторая опасность, что довольно сложная математическая форма теории угрожает затмить ее простое (и естественное) физическое содержание. Хорошо известно, что приближенный метод интегрирования гравитационных уравнений общей теории относительности приводит к существованию гравитационных волн [3].


Хмм, я думаю, что стоит вернуться к основам.

Я посылаю вам рукопись с объяснением общей теории относительности, но не осмеливаюсь надеяться на то, что вы действительно ее прочтете.


Спасибо, я подумаю. Итак, с последним предсказанием теории относительности мы разобрались. Каким будет следующее?

По-видимому, более полная квантовая теория также должна будет привести к модификации теории гравитации.

Следующая волна

Гравитационно-волновая астрономия как самостоятельная наука появилась только сейчас. К 2021 году модифицированная аппаратура LIGO должна стать в тысячу раз чувствительнее, чем ее воплощение 2016 года. Целью данной модификации является измерение изменений в расстоянии, равных одной десятитысячной размера протона (10–21 м).


Охотники за гравитационными волнами надеются обнаружить черные дыры во Вселенной, но на пути их подстерегают различные препятствия, и не в последнюю очередь это касается некоторых фундаментальных законов физики. Двойные детекторы LIGO имеют форму L-образных туннелей длиной 4 километра. Для того чтобы обнаружить расширение и сжатие пространства-времени, вызванные проходящей гравитационной волной, физики посылают луч лазера вдоль каждого туннеля, чтобы он отразился от зеркала, установленного в конце. Когда луч возвращается к повороту туннеля, физики снова соединяют его со светом из другого рукава и смотрят, совпадают ли фазы обоих пучков света, имея в виду, что они прошли одинаковое расстояние. Если фазы не совпадают, гравитационная волна поймана.

Чтобы быть уверенным в этом, необходимо учитывать любую случайность, которая может вызвать сдвиг зеркала: волны, разбивающиеся о берег, громыхание проходящего автомобиля, даже сам лазер может сдвинуться с места. Выход такой: держать зеркала как можно дальше от поверхности земли. Ученые подвешивают их к изолированным подмосткам. Они также измеряют колебания почвы сейсмометрами и постоянно регулируют зеркала, чтобы скомпенсировать эти колебания.

Но сейсмометры не могут установить разницу между сотрясением зеркал, вызванным землетрясением (происшедшим, к примеру, в Австралии) или другими причинами. Сильный ветер может наклонить здание, где установлены сейсмометры, и они будут двигать зеркала тогда, когда это не нужно. Поэтому обслуживающий персонал подвешивает сейсмометры на тонких стеклянных стренгах, чтобы изолировать их от вибрации несейсмического происхождения.

Более фундаментальное ограничение накладывается квантовой механикой. На волны с частотами выше 1 килогерца начинает сильно влиять принцип неопределенности Гейзенберга. Он заключается в том, что при измерении двух определенных параметров точность измерения одного из них падает с повышением точности измерения другого. В случае с LIGO этими двумя параметрами являются яркость и фаза световой волны.

К счастью, вы можете послать свет через специальный кристалл, чтобы сжать его и получить возможность измерить необходимый параметр с высокой точностью, правда, за счет падения точности для другого. В этом случае можно более точно измерить фазу, хотя яркость и количество регистрируемых фотонов падает. Это уже делается в LIGO, но новый способ сжатия света с использованием специальных зеркал с микрометровыми шкалами будет добавлен в усовершенствованном варианте.

Скоро к LIGO присоединятся новые детекторы, включая гравитационный детектор VIRGO в Европе и детектор KAGRA в шахте Камиока в Японии. Кроме подтверждения существующих наблюдений, эти инструменты позволят астрономам триангулировать точки слияний черных дыр и других событий, чтобы помочь оптическим и другим телескопам найти их источники.

Усовершенствованная аппаратура LIGO и партнеров сможет ловить новые типы источников гравитационных волн, такие как «звездотрясения» на нейтронных звездах. Но для того чтобы разглядеть их в деталях, а также увеличить число регистрируемых событий на большем протяжении Вселенной, нам потребуется еще более чувствительный детектор. Группа исследователей в Германии работает над созданием телескопа Эйнштейна, который будет иметь 10-километровые рукава и располагаться под землей для повышения точности. Физики уже мечтают о детекторе с рукавами 40-километровой длины и даже придумали для него имя – «Космический исследователь» (Cosmic Explorer). Он будет чувствителен к гравитационным волнам более низких частот, приходящих к нам с гораздо более дальних расстояний – практически мы доберемся до коллапсирующих остатков самых первых звезд.

Существуют ли частицы гравитации в этих волнах?

Примерно 150 лет назад британский физик Джеймс Клерк Максвелл вывел уравнения, которые предсказывали существование электромагнитных волн, распространяющихся со скоростью света. Так родилась теория, которую сегодняшние физики называют классической теорией поля. Она очень хорошо работает для длинноволнового излучения, такого как радиоволны. И только в применении к коротковолновому, высокочастотному излучению (такому как видимый свет, ультрафиолетовое и рентгеновское излучение) в начале XX века возникло квантовое описание, которое привело к идее о крошечных частицах света – фотонах.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация