Общая теория относительности Эйнштейна, которая предсказывает гравитационные волны, является классической теорией поля, как и теория Максвелла. Точно так же, как мы можем описать радиоизлучение с точки зрения волн, не заботясь о фотонах, из которых они состоят, обнаруженные нами гравитационные волны имеют достаточно большую длину, и мы можем рассматривать их как достаточно гладкие волны.
В будущем мы надеемся обнаружить более коротковолновое гравитационное излучение, для которого волновое описание будет уже не вполне справедливым. И тогда нам потребуется рассматривать их с точки зрения частиц гравитации, гравитонов. Если это так, если волны на некотором уровне нужно будет рассматривать как состоящие из частиц, тогда эти частицы должны быть безмассовыми или почти не иметь массы. Согласно общей теории относительности гравитационные волны распространяются со скоростью света, что возможно только для безмассовых частиц.
Будущая теория квантовой гравитации, возможно, будет иметь гравитоны с очень малой массой. В этом случае гравитационные волны будут двигаться немного медленнее скорости света. Наши результаты могут использоваться, чтобы наложить верхний предел на массу гравитона, поскольку очень массивный гравитон будет влиять на форму волн, предсказанных общей теорией относительности для слияния двух черных дыр.
Сможем ли мы создать антигравитационные устройства?
Хотя никому еще не удалось это сделать, идея построения гравитационного щита имеет длительную историю. Возможно, одна из самых удачных попыток была предпринята российским ученым Евгением Подклетновым. В 1992 году Подклетнов опубликовал статью, в которой утверждал, что он обнаружил двухпроцентное уменьшение веса поблизости от вращающегося диска, сделанного из керамического сверхпроводника.
В 2003 году Мартин Таймар, ученый из научно-исследовательского центра в Австрии, опубликовал аналогичное утверждение и смог продолжить свою работу за счет финансирования из Европейского космического агентства (ЕКА). Три года спустя Таймар и ЕКА заявили, что измерен эффект во вращающемся сверхпроводнике, который при дальнейших исследованиях будет способен укротить гравитацию. Никому больше не удалось достичь такого эффекта, но теория относительности не исключает возможности того, что искривленное пространство-время, которое создает силу притяжения, может быть «выпрямлено».
При правильной локализации вещества и энергии можно уменьшить или увеличить влияние гравитации. Например, можно использовать эффект, называемый гравитомагнетизмом. Согласно общей теории относительности масса вращающегося тела затягивает пространство-время вокруг себя, как водоворот. К сожалению, этот эффект на практике очень мал, и остается до конца не ясно, имеет ли вращающийся сверхпроводник какое-либо гравитационно-магнитное влияние. Но не исключено, что в один прекрасный день кто-нибудь найдет способ применить отталкивающие гравитационные эффекты для создания движущей силы или гравитационного экранирования.
Глава 5
Вперед, в космос
Космологи рассматривают Вселенную как единое целое. Они изучают ее рождение и развитие, размеры и форму, предсказывают ее дальнейшую судьбу и пытаются понять ее, используя математические модели, основанные на общей теории относительности.
Первородный детонатор
То, что Вселенная воистину громадна, стало ясно в 1920-е годы, когда Эдвин Хаббл доказал, что «спиральные туманности» на самом деле являются другими галактиками, подобными нашей, но удаленными от нас на расстояния от миллионов до миллиардов световых лет. Он также обнаружил, что их свет немного «покрасневший». Этот факт можно объяснить тем, что они удаляются от нас. Вселенная расширяется.
Это открытие привело к созданию теории Большого взрыва. Если сейчас в космосе все разлетается, то, предположительно, раньше все было «упаковано» гораздо более плотно. А это означает, что новорожденная Вселенная была плотной и горячей. Конкурирующая теория, теория стационарной Вселенной, утверждает, что новое вещество постоянно создается, чтобы заполнять пустоты, возникающие вследствие расширения. Но теория Большого взрыва одержала триумфальную победу в 1965 году, когда Арно Пензиас (род. 1933) и Роберт Вудро Вильсон (род. 1936) открыли космическое микроволновое фоновое излучение. Это реликтовое тепловое излучение, испущенное горячей материей ранней Вселенной через 380 000 лет после Большого взрыва.
Рост Вселенной можно смоделировать, используя теорию относительности: если предположить, что на наибольших масштабах Вселенная однородна, то трудности теории можно преодолеть с помощью достаточно простых уравнений в моделях Фридмана, описывающих расширение и эволюцию пространства.
Согласно этим моделям общая форма пространства-времени в масштабе всей Вселенной может быть искривлена либо вовнутрь, как поверхность сферы, либо изогнута в форме седла. Но наблюдения свидетельствуют, что Вселенная балансирует между двумя типами кривизны и является практически плоской. Это не запрещается в моделях Фридмана, но кажется странным – уж слишком «тонкая» работа требуется для такого баланса. Одно из объяснений может дать теория инфляции. Она утверждает, что в первые доли секунды пространство расширялось с ужасающей скоростью, способной выпрямить любую первоначальную кривизну. Сегодняшняя наблюдаемая Вселенная выросла из микроскопического участка первозданного огненного шара. Эта теория также может объяснить проблему горизонта – почему на одной стороне Вселенной наблюдается практически такая же плотность и температура, что и на другой.
Вмятины в пространстве-времени
Конечно, Вселенная не совсем плоская. Галактики создают небольшие локальные вмятины в пространстве-времени. В 1990 году спутник COBE обнаружил рябь в космическом микроволновом фоне, признак первоначальных флуктуаций плотности. Эта легкая рябь в молодой Вселенной могла быть сформирована случайными квантовыми флуктуациями в поле энергии, которое и запустило инфляцию. Гравитация усиливает первоначальные флуктуации, подталкивая друг к другу более плотные кусочки вещества, и они становятся звездами, галактиками и скоплениями галактик. Сегодня галактики рассеяны по всей Вселенной подобно пене, образуя узелки, струны и стенки, окружающие пузырчатые пустоты. Масштабы этих структур простираются примерно до миллиарда световых лет.
Видимая материя не обладает достаточной гравитацией для создания той структуры, которую мы видим: очевидно, ей должна помогать какая-то форма темной материи. Еще одно доказательство существования этой темной материи предоставляется галактиками, которые вращаются слишком быстро, чтобы удерживать свое вещество без дополнительного гравитационного «клея».
Темная материя не может состоять из протонов, нейтронов и электронов. Когда Вселенной не было еще трех минут от роду, протоны и нейтроны соединились и образовали дейтерий (тяжелый водород) и небольшие количества других легких элементов. Космологи посчитали, что если бы обычного вещества во Вселенной было гораздо больше, чем сейчас, тогда бы и в плотном вареве возникло гораздо больше дейтерия. Поэтому темная материя – это нечто экзотическое, что могло образоваться в самые первые горячие моменты Большого взрыва. Физики предлагали множество гипотетических частиц, которые могли бы входить в состав темной материи, включая так называемые слабо взаимодействующие массивные частицы и более легкие аксионы. Первоначальные черные дыры, вышедшие из горнила Большого взрыва, также могли включиться в образование темной материи.