1948
Теоретики предсказывают, что если Вселенная расширяется из горячего и плотного состояния после Большого взрыва, то она должна оставлять после себя остаточное свечение: космическое микроволновое фоновое излучение.
1964
Радиоантенны улавливают космическое микроволновое фоновое излучение в виде шума. Наступает «золотой век» теории относительности.
1972
Рентгеновское излучение от источника X-1 в созвездии Лебедя предоставляет первое доказательство коллапса звезды и превращения ее в черную дыру звездной массы.
1974
Рассел Халс и Джозеф Тейлор обнаруживают пару нейтронных звезд, чьи орбиты замедляются точно так же, как если бы они теряли энергию, испуская гравитационные волны.
1974
Стивен Хокинг теоретически показывает, что квантовые эффекты могут вынуждать черные дыры испаряться, испуская излучение Хокинга. Возникает вопрос: что происходит с информацией, которую поглощают черные дыры?
1980
Алан Гут и др. выдвигают предположение, что Вселенная, родившаяся в результате Большого взрыва, выровнялась после инфляции – периода ускоренного расширения в первые моменты после своего рождения.
1989
Космическое ведомство США (НАСА) запускает космическую обсерваторию COBE для исследования реликтового (космического микроволнового фонового) излучения. Обсерватория обнаруживает весьма однородное поле излучения, что подтверждает инфляционную теорию Большого взрыва.
1998
Исследования далеких сверхновых показывают, что Вселенная расширяется с ускорением. Космологическая постоянная Эйнштейна приобретает особую актуальность при поиске причин этого явления.
2000-е
Более детальные исследования реликтового излучения подтверждают инфляционную теорию рождения Вселенной в результате Большого взрыва, в которой доминирует темная материя и темная энергия.
2016
Усовершенствованная аппаратура LIGO детектирует гравитационные волны от столкновения черных дыр.
Глава 2
О пространстве и времени
Теория относительности, разработанная Эйнштейном в начале ХХ столетия, включает в себя две части: специальную и общую теорию относительности. Здесь мы познакомим вас с основными элементами этих двух теорий.
Очень специальная теория
Специальная теория относительности, которую Эйнштейн предложил в 1905 году, изменила наши представления о пространстве и времени.
Эйнштейн нарисовал новую картину Вселенной, в которой мы сталкиваемся с очень странными вещами, происходящими во время движения: часы опаздывают, линейки для измерения расстояний сжимаются, а массивные тела становятся еще более массивными. И все это объясняется двумя простыми постулатами: 1) скорость света остается постоянной, независимо от того, кто ее измеряет; 2) соблюдается принцип относительности, который гласит, что одни и те же законы физики действуют для всех наблюдателей, движущихся прямолинейно с постоянными скоростями.
Чтобы понять, почему это происходит, по традиции представим себе поезд (рис. 2.1). Наблюдатель Б (пусть его зовут Боб), который едет в поезде, устанавливает источник света в середине своего вагона. Этот источник посылает два световых луча в противоположных направлениях. С точки зрения этого наблюдателя, лучи достигнут противоположных концов вагона одновременно. Но стоящий на платформе наблюдатель А (по имени Алан) видит нечто другое. Сначала для него скорость каждого светового луча остается точно такой же, какой она видится Бобу. Но пока световые импульсы распространяются, поезд движется вперед. Алан видит, что луч света, направленный к задней стенке вагона, достигает его быстрее, чем луч света, направленный к передней стенке. Итак, два события, одновременные для одного человека, кажутся происходящими в разное время для другого. Одновременность относительна.
Рис. 2.1. В соответствии с принципом относительности события, одновременные для одного человека, могут казаться происходящими в разные времена для другого.
Если два наблюдателя не могут договориться о том, одновременно или нет происходят события, они не смогут договориться и о результатах измерений, касающихся времени. Этот феномен известен под названием «замедление времени». Пусть у наблюдателя Боба в поезде есть «световые часы», состоящие из двух зеркал и источника света. Эти точные часы измеряют время интервалами, которые требуются свету для того, чтобы пройти путь туда и обратно между двумя зеркалами, поставленными под прямыми углами к направлению движения поезда. Проход света от одного зеркала до другого и обратно равен одному «тику» часов. Наблюдатель Боб знает скорость света и расстояние между зеркалами, поэтому он знает время одного «тика».
Постоянная скорость
Но для Алана, стоящего на платформе, «световые часы» с двумя зеркалами двигаются вперед, поэтому путь, по которому проходит свет, лежит для него по двум сторонам треугольника. Этот путь длиннее, чем прямое расстояние между двумя зеркалами, находящимися в покое. Поскольку скорость света постоянна, один «тик» движущихся часов кажется Алану более длительным, чем один «тик» идентичных часов, расположенных на платформе.
Важно понимать, что ситуация является симметричной. Исходя из принципа относительности, наблюдатель Боб может считать, что поезд находится в состоянии покоя, а платформа движется. Проделав такие же расчеты, Боб установит, что часы Алана идут медленнее. Здесь нет никакого парадокса, если мы вспомним, что одновременность относительна. Мы не можем сравнить показания двух разделенных расстоянием часов в «один и тот же миг» до тех пор, пока не решим, что означает этот самый «один и тот же миг». Наши два наблюдателя, например, имеют разные точки зрения на этот счет.
Поскольку световой луч в движущихся часах движется по гипотенузам двух прямоугольных треугольников, легко вычислить величину замедления времени. Если v — это скорость движения часов, а с – скорость света, время растягивается на величину 1/(1–√v2/c2). Эта величина, известная как Лоренц-фактор, появляется во многих релятивистских расчетах.
Замедление времени
Замедление времени, которое таким явным образом проявляется в рассмотренных выше часах, на самом деле характерно для всех движущихся часов и процессов. Эксперименты с быстрыми и короткоживущими элементарными частицами показывают, что их время жизни действительно продлевается за счет Лоренц-фактора.
Давайте пока забудем о времени и поговорим о пространстве. Предположим, что на столике в купе поезда лежит длинная палка. Наблюдатель Алан может измерить длину палки, сосчитав, сколько «тиков» сделают часы на платформе, пока палка проезжает мимо определенной точки на платформе. Но для наблюдателя Боба часы Алана идут медленнее, поэтому в сравнении с его измерениями длина, измеренная Аланом, окажется меньше на тот же самый фактор 1/(1–√v2/c2).