Книга Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность, страница 16. Автор книги Пол Халперн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность»

Cтраница 16

Волновые функции далеки от постоянства, иногда, в зависимости от факторов окружающей среды, они постепенно изменяются. Как пример возьмем электрон, находящийся в медленно изменяющемся магнитном поле – его волновая функция будет трансформироваться столь же неспешно. В других условиях волновые функции резко переходят из одной конфигурации в другую.

Как и в матричной механике Гейзенберга, такие резкие трансформации не являются на сто процентов предсказуемыми, скорее на это всегда есть определенные шансы, как при подкидывании монетки или вращении рулетки.

Уравнение Шредингера, хотя получилось и полезным, и элегантным, не включало несколько важных свойств электронов. Оно не брало в расчет их спин, а также не учитывало эффекты специальной теории относительности Эйнштейна, предложенной в том же 1905-м, волшебном году, когда он создал гипотезу фотоэлектрического эффекта.

В то время как общая теория относительности прилагается к гравитации, специальная теория относительности, ее предшественница, приложима к частицам, движущимся с высокими, но постоянными скоростями. Когда мы занимаемся электронами, игнорируя монументальные открытия Эйнштейна, трудно ждать прорывов.

Относительно говоря

Мотивация Эйнштейна при создании специальной теории относительности происходила от озадачивающего противоречия между классической механикой и теорией электромагнетизма, завязанной на постоянство скорости света. Будучи молодым, австрийский физик поставил мысленный эксперимент, в котором бегун пытается не отстать от световой волны.

Если вдруг бегун достаточно быстр, то классическая механика Ньютона позволяет ему держаться «шаг в шаг» с волной света. Теория электромагнетизма Максвелла, тем не менее, делает это невозможным, поскольку в ней скорость света предстает одинаковой для всех наблюдателей вне зависимости от их собственной, самой невероятной скорости.

Словно преследуя вечно отступающий мираж в пустыне, бегун никогда не сможет сравняться с волной.

Предложенное Эйнштейном решение этой задачи, специальная теория относительности, утверждает, что параметры пространства и времени зависят от относительных скоростей наблюдателей.

Резвый бегун и тот, кто остается на месте, могут по-разному оценить расстояние, пройденное лучом света, и время, которое понадобилось на это путешествие. С точки зрения покоящегося наблюдателя пространство будет сжато, а время растянуто, с точки зрения движущегося – наоборот. Тем не менее, поделив дистанцию на время, чтобы определить скорость света, оба получат одинаковое значение. Следовательно, скорость света, а не показатели линеек и часов, может служить универсальным стандартом.

Вскоре после того, как Эйнштейн предложил свою теорию, математик Герман Минковский нашел, что наиболее элегантно ее можно отобразить, если поместить пространство и время в единую систему координат. Он разработал концепцию пространства-времени, которая подходила и к специальной, и к общей теориям относительности.

С точки зрения Минковского, пространство и время не являются независимыми, это два аспекта единого пространства-времени. Это понятие сводит трехмерное пространство и одномерное время в одну четырехмерную сущность.

Немецкий математик театрально высказал свои гипотезы на научной конференции в 1908 году. Объявив, что «пространство само по себе и время само по себе обречены на то, чтобы уйти со сцены в мир теней»25, он показал, как объединение того и другого в пространство-время позволяет объективно и неизменно описывать вселенную.

Если исходить из революционного взгляда Минковского, то каждое событие имеет четыре координаты, три определяют расположение в пространстве, а четвертая – во времени. Ничто не случается исключительно в пространстве, на любом изменении должен стоять и временной штамп. Дистанции и промежутки времени сами по себе выходят из употребления, уступая место интервалу между явлениями в пространстве-времени.

Кратчайший интервал с нулевым значением именуется «светоподобным» и определяется путем, по которому свет идет от одного события к другому. Это напоминает веревку, которая соединяет два предмета и при этом не провисает.

Например, если мы стоим на вершине Эйфелевой башни и нацеливаем луч света на судно, расположенное на Сене, то этот самый луч соединит два разных с точки зрения пространства-времени явления с максимальной эффективностью. Первое событие будет иметь координаты, определяемые тремя пространственными координатами Эйфелевой башни и моментом передачи. Второе будет иметь немного другие пространственные координаты и чуть-чуть большее значение временной – ровно настолько, чтобы свет дошел. Ничто не может путешествовать быстрее или прямее, чем световой луч.

Отсюда ясно, что светоподобный интервал является золотым стандартом для коммуникации и наилучшей основой для того, чтобы описывать разные эффекты.

Мы точно так же можем направить наш луч в любую другую сторону, взять другое судно, ибо выбор обширен. Поместив его на пространственно-временную диаграмму, где время отложено на одной из осей, а пространственные координаты на других, можно представить громадный набор углов, под которыми свет может исходить из одной точки и распространяться по прямой линии.

Если на диаграмме две пространственных координаты и одна временная, то набор возможностей для светового пути через пространство-время выглядит подобно движению луча по мере вращения маяка, или как раковина, или вроде конуса для мороженого. Поэтому ученые именуют разветвленное множество вариантов «световым конусом». Диаграмма сообщает нам, что все, путешествующее со скоростью света, будет находиться внутри светового конуса. Обычно под первым световым конусом помещают второй, перевернутый, он показывает возможные траектории для прибывающего света. Другими словами, он рисует нам набор лучей, светящих из прошлого.

Вместе два конуса формируют нечто вроде песочных часов, демонстрируют пределы для путешествия света в прошлом и будущем.

Оптика показывает нам, почему свет, путешествуя через вакуум или однородную среду, движется по прямой линии. В соответствии с «принципом наименьшего времени», который ввел в науку математик Пьер де Ферма в середине семнадцатого века, свет всегда выбирает самый быстрый путь через пространство. Поскольку скорость его является константой, то для минимизации времени путешествия он должен выбрать кратчайший маршрут. А как знает любой студент, изучающий геометрию, такой маршрут меж двух точек – прямая линия.

В соответствии со специальной теорией относительности любой объект, обладающий массой, будет двигаться медленнее света. Мы можем наблюдать проявление этого эффекта во время грозы, когда вспышки молнии достигают нас раньше грома. Приходится ждать, чтобы до нас добрался звук, который переносят молекулы воздуха, обладающие массой. Еще большее время проходит, прежде чем мы увидим соседей, удирающих из-под дождя в поисках убежища, но ведь их масса больше, чем у молекул.

Именно поэтому свет, выбирающий самый короткий путь, является идеальным средством коммуникации. Отметим только, что мы имеем в виду свет во всех его проявлениях, включая невидимое излучение вроде радиоволн.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация