Книга Всего шесть чисел. Главные силы, формирующие Вселенную, страница 14. Автор книги Мартин Дж. Рис

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Всего шесть чисел. Главные силы, формирующие Вселенную»

Cтраница 14

Когда водород, находящийся в центре большой звезды, превращается в гелий (элемент № 2 в таблице Менделеева), ее ядро сжимается, повышается температура и гелий начинает реагировать. Электрический заряд ядра гелия в два раза выше, чем у водорода, поэтому этим частицам нужно сталкиваться на большей скорости, чтобы преодолеть более сильное электрическое отталкивание, а для этого требуется более высокая температура. Когда запас гелия истощается, звезда сжимается и разогревается еще больше. У таких звезд, как Солнце, ядро никогда не достигает такой температуры, чтобы эти преобразования зашли слишком далеко, но центральные части более тяжелых звезд, где притяжение сильнее, нагреваются до миллиарда градусов. Они освобождают полученную энергию путем образования атомов углерода (шесть протонов) и затем цепочкой преобразований в вещества с постепенно возрастающим атомным весом: кислород, неон, натрий, кремний и т. д. Количество энергии, высвобождающейся при формировании отдельных атомных ядер, зависит от соотношения двух сил: атомной, которая «склеивает» определенные протоны и нейтроны вместе, и разрушительного эффекта электрической силы между протонами. Ядра атомов железа (26 протонов) связаны крепче, чем любые другие атомы; для создания еще более тяжелых ядер требуется еще больше энергии. Таким образом, когда ядро звезды переживает переход в железо, она испытывает энергетический кризис.

Его последствия драматичны. Когда железное ядро достигает порогового размера (примерно 1,4 массы Солнца), тяготение берет верх и ядро сжимается до размеров нейтронной звезды. Этот процесс высвобождает достаточно энергии, чтобы вещество внешних слоев звезды вспыхнуло в колоссальном взрыве, создавая сверхновую. Более того, эти внешние слои к тому моменту имеют весьма неоднородный состав: водород и гелий все еще горят во внешних слоях, но более горячие внутренние слои продвинулись куда дальше по периодической таблице. Вещество, разлетающееся по космосу, содержит смесь этих элементов. Более всего распространен кислород, за ним следуют углерод, азот, кремний и железо. Если принимать в расчет все типы звезд и различные пути их развития, то рассчитанные пропорции веществ согласуются с тем, что можно наблюдать на Земле.

Железо является всего лишь 26-м элементом в таблице Менделеева. На первый взгляд с более тяжелыми атомами могут быть проблемы, поскольку для их синтеза необходимо вложение энергии. Но огромная температура во время коллапса звезды и взрывная волна, которая разносит ее внешние слои, производят небольшие количества остальных элементов периодической таблицы вплоть до урана под № 92 [17].

ГАЛАКТИЧЕСКАЯ ЭКОСИСТЕМА

Первые звезды сформировались примерно 10 млрд лет назад из первичной материи, которая содержала только самые простые атомы – никакого углерода, никакого кислорода и никакого железа. Химия в те времена была бы очень скучным предметом. Разумеется, вокруг первых звезд не обращалось никаких планет. До того как появилось наше Солнце, несколько поколений тяжелых звезд могли пройти через свой полный жизненный цикл, преобразовав первоначальный водород в основные строительные материалы жизни и распространив их по космосу с помощью звездного ветра или взрывов. Некоторые из этих атомов вошли в состав межзвездного облака, напоминающего Туманность Ориона, и в нем примерно 4,5 млрд лет назад сформировалась звезда, окруженная диском из газа и пыли, которому предстояло стать нашей Солнечной системой. Почему на Земле так распространены углерод и кислород, а золото и уран встречаются так редко? Ответ связан со звездами, которые взорвались до того, как образовалось Солнце. Наша Земля и мы сами – осколки древних звезд. Наша Галактика – экосистема, снова и снова перерабатывающая одни и те же атомы с помощью поколений звезд.

Атомы углерода, кислорода и железа в Солнечной системе являются остатками пылевого облака, из которого она сформировалась 4,5 млрд лет назад. Атомы появились внутри тяжелых звезд, которые к тому времени уже разбросали свое вещество. Эти «загрязняющие вещества» составляли всего 2 % массы: водород и гелий по-прежнему оставались доминирующими атомами. Тем не менее тяжелых атомов на Земле хватает, потому что водород и гелий – легкоиспаряющиеся газы, которые быстро покинули все внутренние планеты. Напротив, гигантский Юпитер, как и Солнце, по большей части состоит из водорода и гелия. Он был сформирован из более холодной внешней части диска, который окружал только что появившееся Солнце, и собственного тяготения Юпитера было достаточно для того, чтобы удержать эти легкие атомы.

Более старые по сравнению с Солнцем звезды появились раньше, чем наша Галактика была так сильно «загрязнена». Поэтому по сравнению с Солнцем их поверхность должна испытывать недостаток тяжелых элементов. У звездного света сложный спектр, в котором каждый вид атомов оставляет характерный след. (Например, уличные огни знакомы нам по желтому натриевому свету или характерному голубому свету ртутных паров.) И в самом деле, более тяжелые атомы реже встречаются на самых старых звездах, что соответствует общей схеме истории Галактики. Напротив, гелий очень распространен даже на старых звездах. Причина этого, которую мы обсудим в следующей главе, ведет нас непосредственно к первым минутам после Большого взрыва.

АТОМНЫЙ КОЭФФИЦИЕНТ: ε = 0,007

Расчет соотношения различных атомов – и понимание того, что Творцу не было никакой нужды поворачивать целых 92 ручки настройки, – это триумф астрофизиков. Мы не знаем некоторых деталей, но суть зависит всего лишь от одного числа – значения той силы, что удерживает вместе частицы (протоны и нейтроны), из которых состоят атомные ядра.

Знаменитое уравнение Эйнштейна Е=mc2 сообщает нам, что масса (m) соотносится с энергией (Е) через скорость света (с). Таким образом, скорость света имеет фундаментальное значение. Она точно определяет «переводной коэффициент»: сообщает нам, сколько энергии можно получить из каждого килограмма вещества. Единственный способ, с помощью которого некоторая масса материи может быть на 100 % превращена в энергию, – это ее соприкосновение с равной массой антиматерии, которая (к счастью для нас) в нашей Галактике нигде не встречается в больших количествах. Всего лишь килограмм антиматерии даст такое количество энергии, какое большая электростанция вырабатывает за 10 лет. Но обычное топливо, такое как бензин, и даже взрывчатые вещества, такие как тринитротолуол, высвобождают только миллиардные доли содержащейся в веществе «энергии массы покоя». С помощью этих материалов можно провести химические реакции, которые не изменяют ядра атомов, а только перетасовывают орбиты их электронов и связи между атомами. Но сила термоядерной реакции приводит в трепет, потому что ее эффективность в миллионы раз выше, чем при любом химическом взрыве. Вес ядра атома гелия составляет 99,3 % от веса двух протонов и двух нейтронов, которые нужны, чтобы его создать. Оставшиеся 0,7 % высвобождаются в основном как тепло. Поэтому топливо, которое снабжает энергией Солнце – водород в его ядре, – превращает 0,007 % своей массы в энергию, когда превращается в гелий. Именно число ε определяет срок жизни звезд. Дальнейшие превращения гелия вплоть до железа дают прирост выхода энергии всего на 0,001 %. Таким образом, более поздние стадии жизни звезды оказываются относительно короткими. (Они становятся еще короче, потому что в самых горячих частях звездного ядра дополнительная энергия незримо утекает в нейтрино.)

Вход
Поиск по сайту
Ищем:
Календарь
Навигация