Книга Всего шесть чисел. Главные силы, формирующие Вселенную, страница 18. Автор книги Мартин Дж. Рис

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Всего шесть чисел. Главные силы, формирующие Вселенную»

Cтраница 18

С высокой степенью вероятности расширение началось 10–15 млрд лет назад, наиболее точные цифры – 12–13 млрд лет назад [20]. Есть две причины этой неуверенности в возрасте нашей Вселенной. Расстояние до галактик (в отличие от скорости разбегания) по-прежнему не всегда измеряется точно, а также оценка этого возраста зависит от того, насколько быстрее (или медленнее) Вселенная расширялась в прошлом.

ЗАГЛЯДЫВАЯ В ПРОШЛОЕ

Свет движется с конечной скоростью, из-за этого мы видим отдаленные места не такими, какими они являются сейчас, а такими, какими они были очень давно. В более ранние эпохи Вселенная была более сжатой – «штыри» в нашей «пространственной решетке» были короче. Поэтому другая картина Эшера, «Ангелы и демоны» (рис. 5.2), лучше отображает то, что мы видим на самом деле.


Всего шесть чисел. Главные силы, формирующие Вселенную

Мы ожидали, что отдаленные галактики будут выглядеть не так, как те, которые расположены рядом с нами. Свет от них провел в пути долгое время, поэтому они были младше и менее развиты, когда испустили тот свет, который теперь достиг нас. На той стадии еще не весь первоначальный газ образовал звезды. Эти эволюционные изменения происходят так медленно, что станут заметными только через миллиарды лет. Таким образом, чтобы понять общее направление этих изменений, нужно исследовать такие далекие галактики, чтобы их свет шел до нас несколько миллиардов лет.

Космический телескоп имени Хаббла, названный в честь первооткрывателя космического расширения, движется высоко над Землей, чтобы избежать искажающего эффекта атмосферы и сделать четкие фотографии очень далеких районов космоса. Приборы «Хаббла» настолько чувствительны, что при длинной выдержке позволяют увидеть плотно расположенные в небе тусклые пятнышки, даже если поле зрение так мало, что покрывает менее сотой доли размера полной Луны и при наблюдениях с помощью обычного телескопа этот участок выглядит как черное пятно. (Думаю, великолепные фотографии, сделанные космическим телескопом, оказали на общественное сознание такое же сильное воздействие, как первые снимки из космоса, сделанные в 1960-х гг., на которых была запечатлена Земля со всей ее хрупкой биосферой.) На фотографиях «Хаббла» мы видим тусклые объекты, принимающие самые различные формы, в миллиард раз тусклее, чем любая звезда, которую мы можем увидеть невооруженным глазом. Но каждый из них – это целая галактика размером тысячи св. лет, которая кажется такой маленькой и тусклой, потому что находится на огромном расстоянии. Эти галактики выглядят иначе, чем наши ближайшие соседи, потому что мы видим их сразу после того, как они сформировались: они еще не приняли форму устойчивых вращающихся дисков, как фотогеничные спиральные галактики, изображенные в большинстве книг по астрономии. Некоторые из этих далеких галактик состоят в основном из светящегося рассеянного газа, который еще не сгустился в отдельные звезды. Большинство дальних галактик выглядят значительно более голубыми по сравнению с ближайшими (после поправки на красное смещение, разумеется), потому что массивные голубые звезды, которые к настоящему времени уже умерли, еще светили в то время, когда свет покинул эти далекие галактики.

Эти изображения показывают нам, как такие галактики, как наш Млечный Путь, выглядели, когда зажглись их первые звезды. Когда мы смотрим на Туманность Андромеды, мы можем спрашивать себя, не наблюдают ли андромедяне за нами, используя телескопы еще более мощные, чем у нас. Может быть, они так и делают. Но в тех далеких галактиках никаких подобных достижений техники нет: мы смотрим на их очень примитивную стадию развития, еще до того, как прошло достаточно времени, чтобы многие звезды закончили свое существование. У них еще нет сложной химии; кислорода, углерода и других элементов очень мало для того, чтобы появились планеты, поэтому шанс на существование жизни минимален. Мы видим эти галактики на этапе, когда только закладывались основные строительные материалы для создания планетных систем. (Свет, который мы детектируем, на самом деле излучался в дальней ультрафиолетовой области спектра. Такое излучение невозможно увидеть глазом, и оно даже не проникает сквозь земную атмосферу. Но жесткое ультрафиолетовое излучение этих галактик переходит в красный свет к тому времени, когда добирается до нас.)

Самые отдаленные галактики имеют такое сильное красное смещение, что длина световой волны растянута больше чем в шесть раз: до такой степени должна была расшириться Вселенная с того времени, когда этот свет начал свой путь. Если допустить, что расширение сохраняется стабильным и галактики не ускоряются и не замедляются, то в то время, когда масштаб Вселенной составлял одну шестую своего сегодняшнего размера (расстояния – «штыри» в пространственной решетке Эшера – были в шесть раз меньше), ее возраст составлял одну шестую ее сегодняшнего возраста. На первый взгляд это утверждение может показаться спорным: не означает ли, что галактика должна удаляться в пять раз быстрее скорости света, если свету потребовалось пять шестых возраста нашей Вселенной, чтобы добраться до нас? Но противоречия в этом нет. Специальная теория относительности Эйнштейна (СТО) гласит, что ничто не может двигаться быстрее света относительно нас, когда время измеряется нашими собственными часами. Но та же теория говорит и о том, что быстро двигающиеся часы идут медленнее. Такие часы и в самом деле могут пролетать по пять св. лет за каждый год, который они отсчитывают, если будут двигаться со скоростью, составляющей 98 % скорости света.

На самом деле ситуация сложнее, потому что скорость разбегания не постоянна. Сила притяжения, которую все во Вселенной прикладывает ко всему во Вселенной, вызывает замедление скорости, благодаря которому первые стадии космического расширения были относительно короткими. Но (об этом мы поговорим в главе 7) в дело может включиться еще одна сила, которая приведет к ускорению расширения. Вследствие этого до сих пор остается некоторая неуверенность по поводу того, как далеко во времени (или как далеко в пространстве) отстояли от нас эти отдаленные галактики: наиболее вероятное предположение – свет от них двинулся в путь, когда возраст Вселенной составлял примерно одну десятую от сегодняшнего.

Специалисты по космологии изучают «ископаемые остатки» прошлого: старые звезды, химические элементы, синтезированные, когда наша Галактика была юной, и т. д. В этом смысле они напоминают геологов или палеонтологов, пытающихся узнать об эволюции Земли и ее фауны. Но космологи имеют преимущество перед другими учеными, которые не могут проводить эксперименты и зависят от «исторических» доказательств. Направив свои телескопы на отдаленные объекты, космологи могут увидеть ту эволюцию, которую изучают: население далеких галактик, чей свет начал свой путь миллиарды лет назад, выглядит по-другому по сравнению с нашими ближайшими соседями. Из-за однородности в больших масштабах у всех частей Вселенной похожая история. Таким образом, по крайней мере с точки зрения статистики, эти отдаленные галактики должны быть похожи на то, как миллиарды лет назад выглядели наш Млечный Путь, Туманность Андромеды и другие соседние галактики.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация