Предположим, что для каждой из 109 пар «кварк – антикварк» такая асимметрия добавляет один лишний кварк. Во время охлаждения Вселенной антикварки будут аннигилировать с кварками, испуская кванты излучения. Теперь оно, остыв до очень низких температур, объясняет 2,7-градусное фоновое излучение, заполняющее межгалактическое пространство. Но на каждый миллиард кварков, которые аннигилировали с антикварками, один остался, потому что не нашел себе пары для аннигиляции. Во Вселенной в самом деле более чем в 1 млрд раз больше квантов излучения (фотонов), чем протонов (на 1 м3 приходится 412 млн фотонов и 0,2 протона), и все существующие во Вселенной атомы могли остаться в результате крошечного перевеса вещества над антивеществом. Возможно, мы и вся видимая Вселенная вокруг нас существуем только благодаря разнице в девятом знаке между количеством кварков и антикварков.
Наша Вселенная содержит атомы, а не антиатомы, из-за крошечного «преимущества», которое существовало на очень ранней стадии ее развития. Это, конечно, подразумевает, что протоны (или составляющие их кварки) могут иногда появляться или исчезать без того, чтобы то же самое происходило с антипротонами. Здесь все происходит не так, как в результирующем электрическом заряде: там соотношение сохраняется точно, поэтому если Вселенная вдруг начнет разряжаться, то всегда будет сохраняться равенство положительных и отрицательных зарядов.
Атомы не существуют вечно, хотя скорость их распада является чрезвычайно низкой: наиболее точные расчеты говорят о том, что время жизни атома составляет примерно 1035 лет. Это означает, что в резервуаре, наполненном 1000 т воды, в среднем будет распадаться один атом в год. Эксперименты, проводимые в таких же огромных подземных резервуарах, как те, которые проводятся для обнаружения нейтрино, не дают такой чувствительности, но из них мы уже точно узнали, что срок жизни атома по крайней мере превосходит 1033 лет.
В отдаленном будущем все звезды превратятся в холодные белые карлики, нейтронные звезды или черные дыры. Но и сами белые карлики и нейтронные звезды разрушатся, когда распадутся атомы, из которых они состоят. Если это разрушение займет 1035 лет, то тепло, выделившееся при таком длительном распаде, заставит каждую звезду излучать, как бытовой электрический обогреватель. В далеком будущем, когда все звезды истощат свои запасы ядерной энергии, эти слабые излучатели будут единственными источниками тепла, если не считать случайных вспышек, возникающих при столкновении звезд.
НАСТРОЙКА ПЕРВОНАЧАЛЬНОГО РАСШИРЕНИЯ
Число Ω может быть не точно равно единице, однако его значение сейчас составляет как минимум 0,3
[26]. На первый взгляд это не указывает на «точную настройку» Вселенной. Однако, предположительно, в ранние эпохи существования Вселенной число Ω в самом деле было близко к 1. Этот разброс значений происходит потому, что, несмотря на то, что энергия расширения и гравитационная энергия пребывают в равновесии, расхождение между этими двумя энергиями растет: если бы в первоначальной Вселенной число Ω было чуть меньше единицы, то в конце концов кинетическая энергия стала бы доминирующей (и тогда число Ω действительно сильно уменьшится). С другой стороны, если число Ω значительно превышало единицу, то тяготение вскоре возьмет верх и повернет расширение в обратную сторону.
Пределы «траекторий» для нашей Вселенной, согласующиеся с данными о темной материи, которые сообщают нам о нынешнем значении числа Ω, показаны на рисунке 6.1. Также на рисунке изображены возможные вселенные, в которых жизнь – в том виде, в котором мы ее знаем, – не могла развиться. Рисунок демонстрирует главную загадку: почему наша Вселенная после 10 млрд лет все еще расширяется, притом что значение Ω не слишком отличается от единицы?
Как мы видели в предыдущей главе, мы уже можем сделать надежные выводы о том времени, когда возраст Вселенной составлял одну секунду, а температура – 10 млрд градусов. Теперь представьте, что вы «запускаете» вселенную. Траектория, по которой будет следовать ее развитие, зависит от того импульса, который вы ей дадите. Если она «полетит» слишком быстро, то энергия расширения вскоре станет настолько преобладать (другими словами, число Ω будет таким маленьким), что звезды и галактики так никогда и не смогут притянуться друг к другу и разлетятся в стороны. Вселенная будет расширяться вечно, но в ней не будет никакого шанса на жизнь. С другой стороны, расширение не должно быть слишком медленным: в таком случае вселенная быстро сожмется в «Большом хлопке».
Любая сложная структура должна поддерживаться неоднородностью в плотности и температуре (например, наша биосфера получает энергию, поглощая излучение Солнца и выделяя его в холодное межзвездное пространство). Если мы не антропоцентричны в своем восприятии жизни, мы можем прийти к заключению, что вселенная должна расшириться из состояния «огненного шара» и остыть по крайней мере ниже 3000 градусов, чтобы началась какая-то жизнь. Если первоначальное расширение будет слишком медленным, шанса для жизни не появится.
Удивительно, что наша Вселенная начала свое развитие с такой точной «настройкой» импульса, почти полностью компенсирующей замедляющее действие тяготения. Это похоже на то, как будто сидишь на дне колодца и бросаешь камень так, чтобы он достиг верхней точки траектории точно на уровне среза колодца. Требуется просто потрясающая точность: в первую секунду после Большого взрыва число Ω не могло отличаться от единицы больше, чем на одну часть из миллиона миллиардов (1 из 1015), чтобы Вселенная теперь, через 10 млрд лет, все еще расширялась со значением числа Ω, которое, без сомнений, не слишком отличается от единицы.
Мы уже отметили, что любой мало-мальски сложный космос должен взаимодействовать с «большим числом» N, отражающим слабость тяготения, а также иметь определенное значение числа ε, позволяющее протекать ядерным и химическим процессам. Но хотя эти условия и являются необходимыми, их недостаточно. Только вселенная с «хорошо отлаженной» скоростью расширения может позволить этим процессам развиваться. Поэтому число Ω нужно добавить в список критически важных чисел. В зарождающейся вселенной оно должно быть поразительно близким к единице. Если расширение будет слишком быстрым, тяготение никогда не стянет сгустки материи вместе, чтобы получились звезды и галактики. Если первоначальный импульс будет недостаточным, то «Большой хлопок» оборвет эволюцию, едва она только начнется.
На эту «настройку» специалисты по космологии реагируют по-разному. Самая распространенная реакция на первый взгляд кажется неправильной. Утверждается, что, поскольку первоначальная Вселенная началась со значения числа Ω, близкого к 1, должны быть какие-то глубинные причины того, почему оно является точно единицей. Другими словами, поскольку «настройка» очень точная, она должна быть абсолютно идеальной. Этот в данном случае странный способ рассуждения на самом деле отлично срабатывает в других контекстах: например, мы знаем, что в атоме водорода положительный электрический заряд протона нейтрализуется отрицательным зарядом вращающегося вокруг него электрона с огромной точностью – больше чем одна часть из 1021. Тем не менее никакие измерения не показывают, что общий заряд атома точно равен нулю, – всегда остается допуск на ошибку. Так называемая «теория великого объединения», которая установила взаимосвязь электрических сил с ядерными, в последние 20 лет предложила глубинную причину того, почему нейтрализация зарядов является точной. Тем не менее уже 50 лет назад многие физики предполагали, что нейтрализация зарядов является точной, хотя тогда у них не было никаких убедительных аргументов.