Книга Всего шесть чисел. Главные силы, формирующие Вселенную, страница 30. Автор книги Мартин Дж. Рис

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Всего шесть чисел. Главные силы, формирующие Вселенную»

Cтраница 30

Кажется, расширение будет продолжаться бесконечно. Мы не можем предсказать, что будет с жизнью через десять миллиардов (или более) лет: она может исчезнуть, но, с другой стороны, может и развиться в состояние, когда станет способна влиять на весь космос и, возможно, сможет даже изменить эти прогнозы. Мы можем рассчитать окончательную судьбу неодушевленной Вселенной: даже самые медленно горящие звезды умрут, и все галактики нашей Местной группы – наш Млечный Путь, Туманность Андромеды и десяток более мелких галактик – сольются в единую систему. Бо́льшая часть первоначального газа к тому времени будет связана мертвыми остатками звезд. Некоторые из них станут черными дырами, другие – очень холодными нейтронными звездами или белыми карликами.

Если заглянуть еще дальше, те процессы, которые сегодня идут слишком медленно, чтобы быть заметными, войдут в свои права. Столкновения звезд внутри обычной галактики сейчас случаются чрезвычайно редко (к счастью для нашего Солнца), но они будут происходить время от времени. Спокойное существование нашей Галактики станет иногда освещаться мощными вспышками, каждая из которых будет говорить о столкновении двух мертвых звезд. Потеря энергии через гравитационное излучение (эффект, предсказанный ОТО) сейчас идет неощутимо медленно, если не считать нескольких двойных звезд, с тесными орбитами, по которым они движутся с большой скоростью. Но при наличии достаточного времени это явление сожмет все звездные и планетные системы. Возможно, даже атомы не будут существовать вечно. Вследствие этого белые карлики и нейтронные звезды истощатся из-за распада частиц, их составляющих. В конце концов распадутся и черные дыры. Поверхность дыры слегка расплывчата из-за квантовых эффектов, в результате чего она излучает. В нашей сегодняшней Вселенной этот эффект идет слишком медленно, чтобы нас заинтересовать, если только действительно не существуют мини-дыры размером с атом. Масштаб времени для полного распада черной дыры, равной по массе звезде, составляет 1066 лет, а черная дыра, равная по массе миллиону Солнц, исчезнет за 1093 лет.

В конце концов через 10100 лет единственное, что останется от нашей Местной группы галактик, – это всего лишь облачко темной материи и несколько электронов и позитронов. Все галактики внутри Местной группы подвергнутся внутреннему распаду и удалятся от нас. Но скорость, с которой они будут распыляться, полностью зависит от значения числа λ. Если λ будет равняться нулю, сила обычного тяготения замедлит удаление: хотя галактики станут неуклонно расходиться, их скорости (и красное смещение) будут постепенно уменьшаться, хотя так и не дойдут до нуля. Если у наших отдаленных потомков будут достаточно мощные телескопы, чтобы обнаружить галактики с большим красным смещением, несмотря на свойственное им потускнение и постоянно возрастающую дистанцию, они действительно смогут увидеть больше, чем видно на нашем сегодняшнем небе. Спустя, скажем, 100 млрд лет мы сможем видеть на 100 млрд св. лет: те объекты, которые сейчас находятся за пределом видимости (из-за того, что свету не хватило времени добраться до нас), появятся в поле зрения.

Но если число λ не равно нулю, космическое отталкивание будет тянуть галактики друг от друга с возрастающей скоростью. Они исчезнут из поля зрения быстрее, и их красное смещение станет возрастать. Наш предел видимости будет ограничен горизонтом, напоминающим некую версию вывернутого наружу горизонта событий вокруг черной дыры. Когда что-то падает в черную дыру, оно ускоряются, приобретает все большее красное смещение и исчезает из поля зрения, когда достигает «поверхности» дыры. Галактика в λ-доминирующей вселенной станет двигаться с ускорением по направлению от нас, и чем она ближе к горизонту, тем ее скорость будет ближе к скорости света. В более поздние времена мы увидим не больше, чем сейчас. Все галактики (за исключением Туманности Андромеды и других маленьких галактик, которые тяготение связывает в нашу Местную группу) обречены исчезнуть из поля зрения. Их далекое будущее лежит вне предела нашей видимости, и оно для нас так же недоступно, как события внутри черной дыры. С течением времени пустота межгалактического пространства будет увеличиваться по экспоненте.

ГЛАВА 8
ПЕРВИЧНАЯ «РЯБЬ»: ЧИСЛО Q

Вселенная была создана в менее чем оформленном состоянии, но была наделена даром изменяться из неоформленной материи в поистине великолепный набор структур и форм жизни.

Бл. Августин
ТЯГОТЕНИЕ И ЭНТРОПИЯ

В природе, как и в музыке или живописи, даже самые замечательные творения не бывают ни строгими и абсолютно идеальными, ни совершенно хаотическими и непредсказуемыми. Они сочетают и то и другое. Искусно «выстроенная» космическая среда, которую мы видим вокруг, не полностью упорядочена, но и не является местом, которым правит исключительно случай. Всего существует 92 вида атомов, а не только простые водород, дейтерий и гелий, которые появились в момент Большого взрыва. Атомы теперь оказались в сложных организмах земной биосферы, в звездах, а некоторые рассеяны в пустоте межгалактического пространства. Разница температур также огромна: у звезд поверхность жарко пылает (а ядро еще горячее), но температура темного пространства близка к абсолютному нулю – оно подогрето всего до 2,7 °K реликтовым излучением, оставшимся после Большого взрыва.

Вся эта замысловатая многогранность развилась из скучного аморфного огненного шара, и это может показаться нарушением «священного» физического принципа – второго закона термодинамики. Этот закон описывает непоколебимое стремление к единообразию и отход от схем и структур: если что-то является горячим, то оно стремится остыть; если что-то является холодным, оно нагревается. Чернила и воду легко смешать, в то время как обратный процесс – возможность взбалтывать мутную жидкость до того, чтобы краска собралась в темную каплю, – поразил бы нас. Упорядоченные структуры смешиваются и теряют порядок, но не наоборот. Используя термины физики, мы сказали бы, что энтропия не уменьшается. Ее заметное понижение в каком-то отдельном месте всегда уравновешивается увеличением энтропии в других местах. Классический пример этого принципа – паровой двигатель, где упорядоченное движение поршня всегда сопровождается потерей тепла.

Тем не менее когда мы рассматриваем действие тяготения, нам следует пойти вопреки интуиции. Звезды, например, удерживают форму благодаря направленной к их центру силе притяжения. Эта сила уравновешивается давлением раскаленных внутренних слоев, направленным наружу. Каким бы странным это ни казалось, но звезды нагреваются, когда теряют энергию. Представьте, что топливо, которое находится в центре Солнца, погаснет. Его поверхность будет продолжать сиять, потому что тепло распространяется от ядра, которое остается еще более горячим. Если процесс ядерного синтеза не будет поддерживать это тепло, Солнце начнет постепенно сжиматься, в то время как энергия станет вытекать наружу (это будет продолжаться примерно 10 млн лет, как и полагал лорд Кельвин в XIX в.). Но такое сжатие на самом деле сделает ядро еще горячее, чем раньше: тяготение на коротких расстояниях действует сильнее. Поэтому температура в центре будет подниматься для обеспечения достаточного давления, чтобы уравновесить бо́льшую силу, давящую снаружи. Нечто подобное происходит, когда искусственный спутник постепенно опускается по спирали на более низкую орбиту, испытывая сопротивление атмосферы: он нагревается, но только половина энергии, высвобожденной благодаря тяготению, переходит в тепло. Другая половина идет на ускорение спутника, потому что чем орбита ниже, тем быстрее он движется.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация