Прежде чем обсуждать, что происходит на завершающих стадиях жизни звезд, мы вернемся к вопросу о том, как знание температуры поверхности и светимости звезды помогает нам определить ее массу. Пожалуй, проще подойти к этому вопросу с другой стороны: если мы знаем массу и химический состав звезды, мы можем вычислить температуру ее поверхности и светимость при помощи уравнений строения звезд. Здесь есть множество технических подробностей, но основные принципы следующие. Чтобы уравновесить силу тяжести, более массивной звезде требуется большее тепловое давление. Поэтому в ее недрах идет более интенсивное термоядерное горение, испускается больше фотонов, и звезда становится ярче. Самая высокая температура достигается в центре звезды, по мере удаления от центра она снижается, а на поверхности становится минимальной. Конкретное значение температуры поверхности звезды зависит от ее строения, но по крайней мере в начальной фазе водородного горения, которую астрономы называют фазой главной последовательности, у более массивных звезд наблюдается и более высокая температура поверхности. А она, в свою очередь, определяет видимый цвет звезды. Таким образом, на основе наблюдений цвета и яркости звезд астрономы могут выполнить обратные вычисления и оценить их массу и химический состав.
Так удалось установить, что в системе CygX-1 находится звезда с температурой поверхности 30 000 кельвинов и массой 20 солнечных масс. При такой высокой температуре эта звезда выглядит голубой (хотя заметить это довольно трудно – она настолько далеко от Земли, что увидеть ее можно только в хороший бинокль или в телескоп). По размеру она по крайней мере вдесятеро больше Солнца и классифицируется как голубой сверхгигант.
По этим данным и по наблюдаемым доплеровским сдвигам спектральных линий астрономы смоделировали орбиту двойной и вычислили из этой модели массу невидимого компаньона: она оказалась равной примерно 15 массам Солнца. Почему же это непременно должна быть черная дыра? Ответ снова дает теория строения звезд. Как мы уже объясняли, за время своей эволюции массивная звезда проходит различные стадии выгорания своего ядерного топлива, и выделяемая при этом энергия обеспечивает давление, необходимое для уравновешивания силы тяжести. Термоядерные реакции идут до тех пор, пока в недрах звезды не образуется ядро из атомов группы железа. Такие ядра наиболее устойчивы; любые дальнейшие процессы ядерного синтеза или распада требуют поступления энергии.
[11] На рассматриваемой стадии атомы в ядре звезды полностью ионизованы: все электроны сорваны с орбит и свободно «плавают», образуя специфическое состояние вещества: ферми-газ, или вырожденный газ. Одним из свойств этого вырожденного состояния является то, что даже при нулевой температуре оно может оказывать существенное давление. Для маломассивных звезд типа Солнца давления вырожденного электронного газа достаточно, чтобы поддерживать равновесие ядра, когда прекращается термоядерный синтез (заметим, что у маломассивных звезд это происходит еще до образования в их ядре железа). Такие звезды заканчивают жизнь, превращаясь в белые карлики.
Последние стадии эволюции массивных звезд происходят более бурно. Как только масса железного ядра становится больше так называемого предела Чандрасекара, составляющего примерно 1,4 массы Солнца, давление вырожденного электронного газа становится недостаточным для поддержания равновесия ядра звезды, и оно коллапсирует – обрушивается к центру. Температура и плотность растут с огромной скоростью, и высокоэнергетические фотоны начинают разрушать атомы железа. В этой крайне плотной среде свободные электроны и протоны быстро объединяются, образуя нейтроны, – формируется нейтронный газ. Нейтроны являются фермионами, а значит, они тоже создают давление вырожденного газа, и оно оказывается гораздо выше, чем у газа из вырожденных электронов, – таким высоким, что оно способно остановить коллапс ядра. Происходит это довольно быстро и бурно, в результате чего сквозь всю толщу звезды наружу распространяется мощная ударная волна. Многие подробности всё еще остаются неясными, но в целом астрономы уверены, что именно так начинается то, что в конце концов наблюдается как взрыв сверхновой II типа. В ходе него внешние слои звезды выбрасываются в пространство, но некоторая часть вещества падает обратно на ядро, которое теперь можно назвать прото-нейтронной звездой.
Подобно тому как для массы звездных ядер, равновесие которых поддерживается давлением электронного вырожденного газа, существует предел Чандрасекара, аналогичная предельная масса может быть вычислена и для нейтронного вырожденного газа: ее иногда называют пределом Толмена – Оппенгеймера – Волкова (TOV). Физика ядерного вещества при критических плотностях, существующих в нейтронных звездах, еще не вполне понятна, и поэтому истинное значение предела TOV известно не вполне точно. Из наблюдений нейтронных звезд мы знаем, что оно составляет по крайней мере две массы Солнца. Теория при этом утверждает, что оно не может превышать примерно трех солнечных масс, если сделать разумное предположение о том, что звуковые волны в нейтронной звезде не могут распространяться быстрее скорости света. Если на ядро в результате аккреции свалится достаточно вещества, чтобы масса ядра превысила предел TOV, то прото-нейтронная звезда тоже сколлапсирует. При плотностях выше ядерной могут, конечно, существовать и еще не открытые фазовые состояния вещества, но если скорость звука и в этих состояниях меньше скорости света, то никакое ядро с массой выше трех солнечных не сможет оставаться в равновесии, и тогда общая теория относительности с неизбежностью предсказывает образование черной дыры.
Вернемся к CygX-1. Мы знаем, что масса компаньона около 15 солнечных. Существуют и гораздо более массивные видимые звезды (как раз видимая звезда в системе Cyg X-1 именно такая!), но так как компаньон невидимый, его равновесие не может поддерживаться за счет тепловыделения, как у обычных звезд. Однако 15 солнечных масс – это намного выше предела TOV. И мы поэтому заключаем, что компаньон не может быть ни обычной звездой, ни белым карликом, ни нейтронной звездой, ни вообще каким-либо звездообразным объектом, состоящим из обычного (барионного) вещества. Возможно, это «темная звезда», образовавшаяся из темного вещества? Это вещество должно состоять из гипотетических частиц, которые очень слабо взаимодействуют (или вообще не взаимодействуют) с обычным веществом. Поэтому мы и не можем видеть ее: она слишком слабо взаимодействует с электромагнитным полем, чтобы быть способной порождать достаточно видимых фотонов. Гипотеза темного вещества возникла несколько десятилетий назад как попытка объяснить следующий наблюдательный парадокс: на масштабах размеров галактик и выше наблюдаемые звезды и галактики двигаются так, как если бы на них действовали гравитационные силы гораздо большие, чем те, которые можно объяснить за счет всех известных форм окружающего их вещества: галактик, звезд, пыли, газа, света, нейтрино и т. д. Мы не имеем ни малейшего представления о том, чем обусловлена эта аномальная сила, но по крайней мере на сегодняшний день многие ученые уверены, что всё дело в присутствии некоторой формы темного вещества. Если основываться на этом допущении, то можно пойти дальше и предположить, что темное вещество может конденсироваться и образовывать темные компактные объекты, один из которых и мог бы быть невидимым компаньоном в двойной системе Cyg X-1. Однако сама по себе гипотеза темного вещества не противоречит возможности существования черных дыр (некоторые даже предполагали, что черные дыры и есть форма темного вещества). Чтобы показать, что «темная звезда» теоретически возможна и действительно может претендовать на роль невидимого компонента в системе Cyg X-1, придется принимать еще больше допущений, чем для черной дыры.