Книга Гравитация. Последнее искушение Эйнштейна, страница 62. Автор книги Маркус Чаун

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Гравитация. Последнее искушение Эйнштейна»

Cтраница 62

Как считают учёные, важную роль в этих поисках может сыграть одна крошечная константа. На расстоянии в 1,6×10−35 (то есть в десять миллионов миллиардов миллиардов раз меньше диаметра атома) метра сила притяжения оказывается сравнимой с тремя другими фундаментальными силами природы: электромагнитной силой, а также сильным и слабым ядерным взаимодействием. Существование планковской длины даже признавал сам Планк в 1900 году, пускай и по иным основаниям. Он полагал, что эта величина настолько универсальна, что «сохраняет своё значение во все времена и во всех культурах, даже внеземных и нечеловеческих». [240]

Квантовая теория успешно описывает все негравитационные силы, а значит, для понимания того, что происходит на планковской длине или около неё, может потребоваться квантовое описание гравитации. В квантовой картине мира фундаментальные силы возникают в результате действия переносящих силу частиц, которые постоянно движутся туда-сюда, как теннисный мяч, отбиваемый игроками. Для электромагнитной силы носителем является фотон, для слабого ядерного взаимодействия — три векторных бозона, а для сильного ядерного взаимодействия — восемь глюонов. Поскольку частицы-переносчики являются виртуальными, то есть то появляются из вакуума, то исчезают в нём, то чем больше массы-энергии они содержат, тем короче оказывается их существование и тем меньшее расстояние они успевают пройти за это время. Соответственно, чем более массивной является частица-переносчик, тем меньше радиус воздействия силы, которую она переносит. К примеру, из-за массивности векторных бозонов слабое ядерное взаимодействие распространяется на куда меньшее расстояние, чем диаметр атомного ядра, в то время как фотоны, обладающие нулевой массой, позволяют электромагнитной силе преодолевать огромные расстояния.

Следовательно, для того чтобы квантовое описание гравитации было возможным, должна существовать частица — переносчик гравитационного взаимодействия. Теоретики окрестили эту гипотетическую частицу гравитоном, хотя даже само её существование остаётся под сомнением из-за множества связанных с ней затруднений. К примеру, сила взаимодействия зависит от того, как часто переносчики вступают в контакт с частицами, способными «почувствовать» силу. Но гравитационное взаимодействие очень слабо по сравнению с другими силами (например, сила притяжения между протоном и электроном в атоме водорода в 10 000 миллиардов миллиардов миллиардов миллиардов раз слабее, чем электромагнитная сила). А это значит, что гравитоны почти никогда не контактируют с материей. Для того чтобы столкнуться с гравитоном, детектору массой с планету Юпитер потребовалось бы больше времени, чем существует Вселенная. [241]

Но даже если не учитывать проблему с гравитонами, объединить теорию гравитации Эйнштейна с квантовой теорией всё равно очень сложно. Кажется, будто они совершенно несовместимы. Общая теория относительности говорит об определённости и предсказывает будущее со 100%-ной точностью, в то время как квантовая теория описывает вероятность существования множества альтернативных вариантов будущего. Однако, как верно замечает Дэвид Тонг из Кембриджского университета, несмотря на это, физики сумели предложить квантовое описание для всех прочих фундаментальных сил природы.

Квантовая теория отрицает само существование точных местоположений в пространстве и траекторий тел, которые по нему движутся, а ведь именно эти величины являются краеугольным камнем теории гравитации Эйнштейна. Более того, квантовая теория рассматривает Вселенную на микроуровне как дискретную, в то время как для теории гравитации она непрерывна. Если и этих аргументов вам недостаточно, подумайте вот о чём: негравитационные силы Вселенной действуют в пространстве-времени, в то время как гравитация сама является пространством-временем. «Это различие может показаться несущественным, — пишет Тонг, — но чувствуется, что с гравитацией всё же что-то не так».

Планковская длина важна не только потому, что на ней сила гравитационного взаимодействия становится сравнимой с другими силами и, соответственно, требует квантового объяснения. Согласно квантовой теории, на длине Планка квантовые флуктуации так велики и локализованы, что, когда энергия возникает из ниоткуда, это происходит в пределах её собственного горизонта событий. Иными словами, она тут же схлопывается, формируя чёрную дыру. Очевидно, что это звучит нелепо. Если бы подобное действительно происходило, то пространство-время на планковской длине было бы постоянно скрыто от нашего взора внутри чёрной дыры, а крошечные чёрные дыры то и дело возникали бы вокруг нас в воздухе.

Судя по всему, не только общая теория относительности предсказывает существование сингулярности. Квантовая теория тоже содержит бессмысленное предположение о спонтанном самозарождении чёрных дыр. Единственное различие состоит в том, что планковская длина, несмотря на её крошечные размеры, намного больше нулевой длины сингулярности. Судя по всему, новая теория, которая объединит общую теорию относительности и квантовую теорию, может потребовать внесения фундаментальных изменений и в ту и в другую.

Выход есть — и даже без экспериментов

Самый очевидный способ создать новую квантовую теорию гравитации — это исследовать микромир в тех невероятно малых масштабах, в которых теория Эйнштейна перестаёт работать, а время и пространство утрачивают смысл. «В конце концов, всё решают эксперименты, а для того, чтобы их провести, нам нужно изучить мир в пределах планковской длины», — говорит Аркани-Хамед.

Но невероятно малые масштабы означают огромную энергию. Чтобы вы лучше понимали контекст, давайте вспомним, что в Большом адронном коллайдере, построенном неподалёку от Женевы, разогнанные частицы могут сталкиваться с энергией 10 000 гигаэлектрон-вольт. [242] В пределах планковской длины энергия будет составлять десять миллиардов миллиардов гигаэлектрон-вольт, то есть окажется в миллион миллиардов раз выше, чем та, которую человечество может получить в БАК. Для того чтобы сгенерировать такую энергию с помощью доступных на сегодняшний день технологий, потребуется кольцо-ускоритель с диаметром, примерно равным 1/10 диаметра Млечного Пути. Возможно, где-то во Вселенной и существует цивилизация, которой удалось превратить 10% соседней галактики в очень большой адронный коллайдер, но это кажется маловероятным.

Итак, шансов на проведение экспериментов в микромире практически нет. Но, так как вся Вселенная когда-то существовала в пределах планковской длины, есть вероятность, что в макромире ещё остались следы того времени. К ним можно отнести, к примеру, распределение галактик. Аркани-Хамед говорит: «Чтобы добраться до планковской длины, мы должны оперировать космическими величинами».

Вход
Поиск по сайту
Ищем:
Календарь
Навигация