Книга Гравитация. Последнее искушение Эйнштейна, страница 70. Автор книги Маркус Чаун

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Гравитация. Последнее искушение Эйнштейна»

Cтраница 70

Вскоре после того как т’Хоофт предположил, что недостающая информация из чёрной дыры может быть закодирована в горизонте событий, Леонард Сасскинд из Стэнфордского университета показал, как эта гипотеза может быть включена в теорию струн. Представьте себе горизонт событий чёрной дыры как массу перепутанных вибрирующих струн. Используя этот образ, Эндрю Стромингер из Калифорнийского университета в Санта-Барбаре и Камран Вафа из Гарвардского университета сумели предсказать точное значение энтропии чёрной дыры, рассчитанной Бекенштейном. [270]

Поскольку излучение Хокинга зарождается в вакууме в непосредственной близости от горизонта событий чёрной дыры, можно предположить, что микроскопические неровности его ландшафта оказывают на него влияние. Эти неровности «модулируют» излучение, как музыка модулирует волну радиостанции. Таким образом, информация о звезде, предшествовавшей появлению чёрной дыры, переносится во Вселенную излучением Хокинга. Она не теряется, а значит, один из самых важных законов физики продолжает действовать.

Это решение информационного парадокса чёрных дыр кажется несколько надуманным. Нам всё ещё требуется более глубокая теория, которая объединила бы в себе эйнштейновскую теорию гравитации и квантовую теорию. Но если это предположение верно, то из него вытекают неожиданные выводы. Информация, полностью описывающая звезду (трёхмерный объект), сохраняется на горизонте чёрной дыры (двумерной поверхности). Это делает горизонт похожим на голограмму. Представьте себе, что было бы, если бы каждая лягушка носила с собой голографическое изображение головастика, которым она когда-то была. Чёрные дыры делают примерно так же с голограммами звёзд.

Если бы эта гипотеза применялась только к таким странным объектам, как чёрные дыры, она казалась бы всего лишь любопытным предположением. Но т’Хоофт и Сасскинд считают, что идея о голографическом изображении может дать нам ценную информацию обо всей Вселенной.

Голографическая Вселенная

Как и любая чёрная дыра, Вселенная ограничена горизонтом. Космический «световой горизонт» — это не край Вселенной, потому что она может продолжаться бесконечно, но граница наблюдаемого мира. Внутри этого горизонта находятся звёзды и галактики, свету которых хватило времени с момента рождения Вселенной (то есть 13,82 миллиарда лет), чтобы долететь до нас. Света звёзд и галактик за горизонтом этого времени оказалось мало. Он всё ещё движется к нам. [271]

Сасскинд и т’Хоофт предположили, что, раз информация, описывающая трёхмерную звезду, может быть записана на двумерном горизонте чёрной дыры, информация о трёхмерной Вселенной тоже может быть представлена в виде голограммы на её горизонте. Эту идею можно толковать разными способами. Согласно одному из них, Вселенную по каким-то причинам можно полностью описать, используя на одно измерение меньше, чем обычно. Что уже само по себе странно. Ещё одно, более широкое толкование утверждает, что мы живём на поверхности горизонта, но верим, будто находимся внутри него. Есть и ещё одно объяснение, звучащее столь же странно: возможно, наша трёхмерная Вселенная — это в буквальном смысле проекция двумерной голограммы на окружающем её горизонте. В таком случае все мы, включая и вас и меня, — голограммы!

Подобные рассуждения по аналогии вряд ли можно назвать точным научным методом. Кроме того, переходить от свойств чёрных дыр к свойствам всей Вселенной — это слишком большое допущение. Но в 1998 году аргентинский физик Хуан Малдасена опубликовал работу, в которой не только упрочил идею, что мы живём в голографическом мире, но и перевернул всю физику с ног на голову.

Конформные теории поля — это класс теорий, которые соответствуют как квантовой теории, так и специальной теории относительности (одной из таких теорий является Стандартная модель). Малдасена представил себе пятимерную Вселенную, наполненную фундаментальными частицами, которые движутся в соответствии с эйнштейновской теорией гравитации (такую Вселенную также можно назвать гиперпространством). Затем он сделал вывод, что такая Вселенная должна быть окружена четырёхмерной границей, как двумерная поверхность воздушного шара окружает объём воздуха в нём. Граница должна содержать в себе фундаментальные частицы, движущиеся в соответствии с конформной теорией поля. [272]

Чудесное открытие Малдасены состояло в том, что уравнения границы содержат ту же информацию и описывают те же физические явления, что и более сложные уравнения для всей пятимерной Вселенной. Иными словами, влияние гравитации на внутреннюю часть такого мира математически эквивалентно теории квантового поля на его границе. «Дуалистичность квантового и гравитационного описания открывает более глубокую связь между квантовой теорией и гравитационной теорией Эйнштейна, — говорит Берман. — Они кажутся совершенно непохожими друг на друга, но может оказаться, что это всего лишь две стороны одной монеты».

Аркани-Хамед утверждает: «Кажется, будто квантовая теория и теория относительности враждуют друг с другом, но на самом деле они даже могут друг друга поддерживать».

Научное сообщество посчитало работу Малдасены такой важной, что на неё сослались более 10 000 раз в других научных трудах. Сегодня её рассматривают как важную веху в истории современной физики. Некоторые физики полагают, что обнаружение связи между гравитацией и квантовой теорией так же важно, как открытие Максвелла о том, что электричество, магнетизм и свет можно объединить в единое целое.

Берман предупреждает, что результаты исследований Малдасены применимы только в упрощённой, игрушечной модели Вселенной, известной как пространство анти-де Ситтера. Помимо всего прочего, в нём пространство не расширяется, как в реальности. Тем не менее учёные полагают, что эти результаты применимы к реальной Вселенной, хотя никто ещё не сумел этого доказать.

Что такое пространство

Открытие Малдасены подняло важный вопрос: как квантовое поле на границе гиперпространства создаёт гравитацию внутри него? В попытке ответить Марк Ван Раамсдонк из Университета Британской Колумбии в Ванкувере в 2015 году создал ещё более простую модель. Это было пустое гиперпространство, соответствующее единственному квантовому полю на границе. Как и квантовые поля, его скрепляла в единое целое запутанность — мгновенное влияние, которое Эйнштейн называл жутким дальнодействием. [273]

Вход
Поиск по сайту
Ищем:
Календарь
Навигация