Книга Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма, страница 47. Автор книги Адам Пиорей

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма»

Cтраница 47

Нейрофизиологи успешно выясняли крупномасштабную структуру коры на протяжении сотни лет — в частности, изучая повреждения-лезии у жертв инсульта и искусственно создавая такие повреждения в мозгу подопытных животных. (Если инсульт убивает клетки в определенной области коры и их гибель явно ассоциируется с потерей определенной функции, например речи, можно заключить, что погибшие клетки мозга играли какую-то роль в выполнении данной функции.)

Но подробности происходящего на микроуровне (то, как отдельные нейроны взаимодействуют друг с другом, и то, какова в реальности функциональная организация этой многомиллиардной армии рабочих клеток мозга) по большей части оставались тайной. Это была совершенно неизведанная страна, открытая для изысканий двух амбициозных молодых ученых.

В ту пору Хьюбелу и Визелю казалось, что дни слишком длинны. Изнурительная работа часто приносила им одни разочарования. Нередко они так уставали, что Визель начинал обращаться к Хьюбелу по-шведски (для них это служило сигналом, что пора бы закругляться). По меньшей мере один раз Хьюбел вернулся домой, когда его семья уже садилась завтракать. Но примерно через месяц после начала исследований эти усилия начали приносить свои плоды. Двое ученых зажимали голову подопытной кошки в прочном каркасе-держателе, который не повредило бы и землетрясение. Целая паутина проводов вела к электродам, измеряющим активность нейронов. Эта проводка, удерживаемая каркасом, позволяла записывать, как определенные нейроны зрительной коры животного реагируют, когда ученые с помощью специального устройства проецируют различные узоры и формы непосредственно на поверхность сетчатки анестезированного зверя.

Цель исследователей состояла в том, чтобы найти единичный стимул, который способен вызвать активизацию определенного нейрона зрительной коры. Хьюбел и Визель пробовали «показывать» кошкам темные пятна на светлом фоне и светлые пятна на темном фоне. Они всячески варьировали параметры фона и размеры пятен. В конце концов они принялись размахивать руками и плясать перед кошками, — и, чтобы немного развеять собственное мрачное настроение, стали демонстрировать им изображения сексуальных красоток из журнальной рекламы. Ничего не происходило. Нейрон, на который они нацелились, продолжал спать.

Так продолжалось несколько дней. И вот однажды, после очередной серии экспериментов, продолжавшейся четыре часа, исследователи решили опробовать новый стеклянный слайд с изображением черного пятнышка, — и их нейрон «застрочил как пулемет», позже вспоминал Хьюбел. Сам звук, соответствующий активизации нейрона, не имел никакого отношения к этому пятну. После того как вставили слайд, его край стал отбрасывать слабую, но четкую тень на кошачью сетчатку — тень темной прямой линии на заднем плане. Ученые осознали: нейрон, который они исследуют, заранее настроен на то, чтобы наиболее бурно реагировать именно на появление такой линии.

Вскоре исследователи пришли к выводу, что некоторые нейроны порождают наиболее интенсивные импульсы, реагируя на линии, которые проходят под определенным углом, тогда как некоторые их собратья, судя по всему, активизируются, когда встречают наклонные линии, движущиеся в определенном направлении. Иными словами, получалось, что различным нейронам мозг поручает различные задания, которые сводятся к тому, чтобы реагировать на определенные внешние стимулы и транслировать их. Удалось выяснить, что у нейронов имеются «поля восприятия», и во многих случаях оказывалось, что если стимул находится в центре такого поля, то нейрон сразу активизируется на всю катушку. Стимулы, расположенные на периферии поля восприятия, вызывали более медленную подачу импульсов. А всё, что находилось вне этого поля, вообще не вызывало реакцию данного нейрона: он продолжал дремать.

Как обнаружили Хьюбел и Визель, именно согласованная подача импульсов индивидуальными нейронами помогает нам выстраивать сложные («составные») изображения перед нашим мысленным взором. Эти нейроны тоже, по сути, расположены «столбцами», и зрительный анализ происходит как весьма упорядоченная последовательность действий: электрические сигналы передаются от одной нервной клетки к другой, причем каждая нервная клетка отвечает (пусть и не целиком) за распознавание определенных видов деталей в этой картинке.

Послание-сигнал, которое глаз отправляет в мозг, давно считалось «тайным шифром, ключ к которому имеется лишь у мозга: только он способен интерпретировать это послание, — отметит профессор Давид Оттосон из Каролинского института, объявляя в 1981 г. о вручении Нобелевской премии этим двум исследователям. — Хьюбел и Визель сумели расшифровать этот код».

Но Хьюбел и Визель по-прежнему хотели понять, как развиваются эти зрительные клетки. Как нейрон приобретает способность откликаться на диагональную линию или вертикальный край? Почему некоторые нейроны чувствительны к движению? И как эти нейроны работают вместе, порождая в нашем мозгу картинку и становясь частью более длинной цепи обработки зрительных сигналов?

Два ученых предположили, что важнейшую роль здесь играет опыт. У детей, родившихся с катарактой (дефектом хрусталика, блокирующим свет), проблемы со зрением часто продолжаются и после того, как катаракта удалена хирургическим путем. Однако если удалить ее пожилому пациенту, подобные проблемы исчезают. Как объяснить такое несоответствие?

Хьюбел и Визель стали изучать его, создав аналогичную ситуацию у подопытных котят — плотно зашивая им один глаз, а второму позволяя развиваться нормально. Затем они повторили эксперимент со взрослыми кошками. Если зрелым животным открывали зашитый глаз, их зрение полностью восстанавливалось. Но у котят этот глаз оставался слепым даже после того, как он переставал быть зашитым. Казалось, Хьюбел и Визель получили неопровержимое доказательство: имеются (как они это назвали) «критические периоды», в течение которых мозг развивается и может программироваться. Это был очень вдохновляющий эксперимент, но он порождал больше вопросов, чем ответов. Как, собственно, действуют эти критические периоды? Можно ли повернуть этот процесс вспять? И каковы биологические предпосылки таких изменений, происходящих в мозгу?

В последние годы нейрофизиологи получили возможность в реальном времени наблюдать за формированием нейронных цепочек в мозгу молодых животных и ответить на некоторые из этих вопросов. Один из самых изящных экспериментов в этой области провела Холлис Клайн, нейрофизиолог из Института Скриппса (в 2015–2016 гг. она являлась президентом Нейрофизиологического общества). В середине 90-х годов Клайн использовала так называемую двухфотонную микроскопию для того, чтобы заглянуть в мозг головастика и с помощью этого метода, дающего беспрецедентный уровень разрешения, воочию увидеть, как нейроны формируют свои первоначальные связи в развивающемся мозгу.

Благодаря высокому разрешению микроскопа исследовательница увидела гораздо более динамичную и изящную картину, чем та, которую описывали предыдущие наблюдатели. В мозгу головастика ответвления различных нейронов, стремясь друг к другу, то вырастали, то втягивались: это напоминало движения длинных тонких пальцев, ищущих контакта. Как правило, контакт между отростками разных нейронов оказывался мимолетным, как случайное столкновение: соприкоснувшись, отростки быстро отстранялись и затем уже связывались с отростками других нервных клеток. Но время от времени происходило нечто такое, что заставляло два ответвления сойтись в полупостоянном объятии. Эта магическая связь происходила лишь в тех случаях, когда оба ответвления были присоединены к телам клеток, испускающим импульс в момент контакта. Так Клайн уловила мгновения, когда рождаются синапсы — эти микроскопические связи между нервными клетками.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация