Книга Значимые фигуры, страница 15. Автор книги Йен Стюарт

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Значимые фигуры»

Cтраница 15

Все изменилось в бурные дни Итальянского возрождения.

Около 1515 г. профессор из Болоньи Сципион дель Ферро открыл метод решения некоторых типов кубических уравнений. Классификация уравнений по типам возникла потому, что отрицательные числа тогда еще не признавались, так что уравнения должны были иметь с обеих сторон только положительные слагаемые. Дель Ферро оставил для своего зятя Аннибала дель Наве кое-какие записи, из которых явствует, что он умел решать уравнения вида «куб плюс неизвестное равно числу». По всей видимости, он умел решать и два других типа, которые вместе с первым по существу перекрывают после некоторой предварительной подготовки все возможные варианты. В его методе решения задействовались как квадратные, так и кубические корни.

Наряду с дель Наве метод решения для уравнений вышеупомянутого типа был известен ученику дель Ферро – Антонио Фиору. Независимо от других решение для этого же случая нашел и Никколо Фонтана (больше известный по политически некорректному нынче прозвищу Тарталья [11] – Заика). У Фиора, который намеревался начать собственное дело как преподаватель математики, возникла прекрасная идея: вызвать Тарталью на публичное состязание, где каждый должен будет решать математические задачи, предложенные соперником. Подобные интеллектуальные сражения были обычны в то время. Но прекрасная задумка вышла Фиору боком: Тарталья, испугавшись слухов о том, что решены уже три типа уравнений и Фиору известны методы их решения, напряг все силы и нашел решения как раз к назначенной дате состязания. Обнаружив по ходу дела, что Фиор умеет решать только один тип уравнений, Тарталья начал предлагать ему только те задачи, которые тот не умел решать, и в результате разбил соперника наголову.

Колоритная новость о разгроме разлетелась быстро и достигла ушей Кардано, который прилежно собирал материалы для своей книги Ars Magna. Он тогда отслеживал любые интересные новости о математике, которые могли бы улучшить будущую книгу, и сразу же понял, что наткнулся на золотую жилу. Более ранняя работа дель Ферро к тому моменту была уже почти забыта, так что Кардано навестил Тарталью, умоляя поделиться с ним секретом кубических уравнений. Тарталья не устоял перед его напором. По легенде, он взял с Кардано клятву хранить его решение в тайне, но, строго говоря, это представляется маловероятным, ведь Кардано собирался написать книгу по алгебре. Во всяком случае, когда книга вышла, в ней было и решение кубических уравнений, принадлежавшее Тарталье. Со ссылкой на его авторство, но это было слабым утешением для того, кого обошли в гонке. Разгневанный Тарталья ответил обидчику сочинением «Различные вопросы и изобретения» (Quesiti et invenzioni diverse), в которое включил все свои переговоры с Кардано. Он утверждал, что в 1539 г. Кардано торжественно поклялся «никогда не публиковать» его открытия. Теперь же клятва была нарушена.

Как легко можно предположить, подлинная история была, вероятно, куда более запутанной. Некоторое время спустя Лодовико Феррари, ставший позже учеником Кардано, заявил, что присутствовал на той памятной встрече и Кардано не давал согласия хранить метод Тартальи в секрете. С другой стороны, Феррари вряд ли можно считать беспристрастным наблюдателем. В ответ на заявление Тартальи о нарушенной клятве он выпустил так называемый cartello – вызов к Тарталье, приглашавший того к дебатам на любую избранную им тему. В августе 1548 г. в церкви, где должен был состояться диспут, собралась большая толпа зрителей. Сомневаюсь, что всех привлекла туда математика; сомневаюсь даже, что многие из зрителей в ней сколько-нибудь разбирались. Большинство привлекла туда жажда старого доброго зрелища, а то и скандала. Хотя никаких сведений о результате состязания до нас не дошло, Феррари вскоре был предложен пост наставника при сыне императора. Напротив, Тарталья никогда не говорил о своей победе; мало того, он потерял работу в Брешии и долго еще жаловался и ныл по поводу результата поединка. Так что мы можем сделать обоснованное предположение.

Ирония ситуации заключается в том, что весь этот спор не имел в общем-то никакого смысла. В ходе подготовки Ars Magna Кардано и Феррари видели болонские бумаги дель Ферро, содержавшие полученное им ранее решение кубических уравнений. Именно это решение, утверждали они, и является подлинным источником метода. Работу Тартальи Кардано упомянул только для того, чтобы объяснить, откуда он узнал о трудах дель Ферро. Вот и все.

Возможно, и так. Но тогда зачем Кардано умолял Тарталью раскрыть ему секрет решения, если уже знал его из более раннего источника? Может, и не умолял. В этом смысле у нас есть только слово самого Тартальи. С другой стороны, что-то же сдерживало Кардано некоторое время, поскольку само по себе решение кубических уравнений ему не было нужно. Феррари под руководством Кардано удалось пройти в этом вопросе на шаг дальше и решить уравнение четвертой степени (содержащее четвертую степень неизвестного, а также более низкие его степени). Но – и это принципиально – его решение работало через сведение всего к соответствующему кубическому уравнению. Так что Кардано не мог открыть миру метод решения уравнений четвертой степени, не рассказав заодно, как решать кубические уравнения.

Возможно, все обстояло именно так, как утверждали Кардано и Феррари. Победа Тартальи над Фиором привлекла внимание Кардано к кубическим уравнениям и дала понять, что решение таких уравнений существует. Затем активные поиски привели его к рукописи дель Ферро, в которой он нашел метод, нужный ему для книги. Вдохновленный открытием, Феррари одолел уравнения четвертой степени. Кардано поместил все это в свою книгу. Феррари, как его ученик, едва ли мог жаловаться на то, что его результаты были туда включены; судя по всему, он даже гордился этим. Из уважения к Тарталье Кардано сослался на него в книге и отдал ему должное за независимое открытие метода и привлечение к нему его, Кардано, внимания.

Книга «Великое искусство» важна еще по одной причине. Кардано применил свои алгебраические методы для нахождения двух чисел, сумма которых равна 10, а произведение 40, и получил ответ: 5 + √-15 и 5 - √-15. Поскольку квадратные корни из отрицательных чисел не извлекаются, он заявил, что этот результат «столь же изящен, сколь бесполезен». Формула для кубических уравнений тоже может давать подобные промежуточные результаты, когда все три решения действительны, и в 1572 г. Рафаэль Бомбелли заметил, что если не обращать внимания на то, что могут означать подобные выражения, и просто просчитать все по формуле, то можно получить верные действительные решения. Со временем это направление мысли привело к созданию системы комплексных чисел, в которой –1 имеет квадратный корень. Без такого расширения системы действительных чисел сегодняшние математика, физика и инженерное дело были бы невозможны.

* * *

В 1540-е гг. Кардано вернулся к медицинской практике. Затем (как я уже говорил, его жизнь сплошная мыльная опера и бульварные газеты) разразилась трагедия. Его старший сын Джамбатиста в свое время тайно женился на Брандонии ди Серони – никчемной и бесстыдной, по мнению Кардано-старшего, женщине. Она публично заявляла, что вышла за Джамбатисту только по расчету и что не он отец ее троих детей. Он отравил жену и сразу же сознался в этом. Судья заявил, что единственный способ для Джамбатисты избежать смертной казни – это договориться с семейством ди Серони о материальной компенсации. Кардано-старший попытался это сделать, но запрошенная сумма оказалась настолько огромной, что он не смог заплатить; по приговору суда его сына пытали, затем отрубили ему левую руку и обезглавили.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация