Книга Перспективы отбора, страница 4. Автор книги Александр Владимирович Марков, Елена Наймарк

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Перспективы отбора»

Cтраница 4

Вторая причина неисчерпаемости запаса полезных мутаций состоит в том, что мутации с очень слабым полезным эффектом требуют очень долгого времени для закрепления в популяции. Такая мутация, появившись, с большой вероятностью будет вскоре потеряна из-за генетического дрейфа — случайных колебаний частот аллелей. Чтобы отбор начал хоть немного «помогать» такой мутации распространяться, число ее носителей должно стать довольно большим, а до тех пор она будет находиться целиком под властью безжалостного, неразборчивого дрейфа (см. Исследование № 4). Расчеты показывают, что подавляющее большинство вновь возникающих полезных мутаций теряются. Чтобы данная слабополезная мутация в конце концов все-таки закрепилась, она должна многократно появиться у разных бактерий независимо. Ленски и его коллеги рассчитали, что мутация, повышающая приспособленность бактерий на одну миллионную, должна возникнуть примерно 250 000 раз, прежде чем она наконец распространится и зафиксируется в популяции. Если принять во внимание частоту мутирования подопытных бактерий (в среднем одна мутация на 1010 нуклеотидов за поколение) и размер их популяций (эффективная численность каждой из них, с учетом ежедневных бутылочных горлышек, составляет примерно 33 000 000 клеток), получится, что такой мутации понадобится 100 000 000 поколений, чтобы «спастись» от дрейфа, и еще миллионы поколений, чтобы зафиксироваться (достичь стопроцентной частоты). Таким образом, накопление слабополезных мутаций в эксперименте Ленски вряд ли закончится в обозримом (и даже необозримом) будущем.

Причины замедления роста приспособленности связаны с тем, что каждая закрепившаяся полезная мутация делает последующие генетические усовершенствования в среднем менее полезными. Авторы называют этот эффект «эпистазом убывающей доходности» (по аналогии с экономическим законом убывающей доходности). Иными словами, сначала происходят наиболее радикальные адаптивные изменения, а затем идет все более тонкая настройка и оптимизация фенотипа.

Еще один фактор, способствующий замедлению роста приспособленности и тесно связанный с предыдущим, — клональная интерференция, то есть конкуренция между клонами бактерий с разными полезными мутациями. Напомним, что бактерии, участвующие в эксперименте, — бесполые, они не могут обмениваться генами. Поэтому, если у одной бактерии возникнет одна полезная мутация, а у другой — другая, эти мутации не смогут объединиться в одном геноме (как это произошло бы у нормальных микробов, способных к горизонтальному переносу генов, и уж тем более у организмов, размножающихся половым путем; см. Исследование № 7). Вместо этого потомки первой бактерии начнут не на жизнь, а на смерть (не на свою, конечно, а своей линии) конкурировать с потомками второй. Победит, естественно, тот клон, чья мутация окажется полезнее. Вторая, менее полезная мутация будет вытеснена и потеряна. Придется теперь ждать, пока она случайно появится снова у бактерии, уже имеющей первую мутацию. А закрепиться она сможет, только если у нее не окажется более удачливых конкурентов. Клональная интерференция во многом объясняет, почему на первых этапах эксперимента фиксировались в основном мутации с сильным полезным эффектом (в среднем первая закрепившаяся в каждой популяции мутация повышала приспособленность на 10 % — это очень много), а затем уже постепенно начинали фиксироваться все менее и менее полезные мутации.

Разумеется, у бактерий, способных к горизонтальному переносу генов, адаптация шла бы гораздо быстрее (см. Исследование № 7). Но и анализировать результаты было бы труднее, потому что к мутационной изменчивости добавилась бы комбинативная, а на эволюцию стали бы влиять такие факторы, как наследственные различия по склонности к приему и передаче генов, избирательность при выборе партнеров и т. д.

Еще один важный результат дало сравнение роста приспособленности у популяций, сохранивших исходный (низкий) темп мутагенеза, и тех, где закрепились аллели-мутаторы, несущие мутации, которые резко (в среднем на два порядка) повысили темп мутирования. На сегодняшний день «гипермутаторами» стали шесть из двенадцати популяций.


Перспективы отбора

рис. 1.2. Повышение темпа мутагенеза ускоряет адаптацию. Черные точки — усредненные данные по шести популяциям, в которых темп мутагенеза остался на исходном низком уровне. Серые треугольники — усредненные данные по трем популяциям, в которых на ранних этапах эксперимента (за первые 20 000 поколений) закрепились аллели-мутаторы. Видно, что приспособленность у вторых росла быстрее, чем у первых. Еще три популяции, у которых мутаторы закрепились поздно, в данном случае не рассматривались. По рисунку из Wiser et al., 2013.


Оказалось, что у «гипермутаторов» адаптация протекала ускоренными темпами (рис. 1.2). Получается, повышенный темп мутагенеза пошел бактериям на пользу. Это противоречит распространенной идее о том, что в стабильных условиях организмам выгодно снизить темп мутирования до нуля. Ведь большинство вновь возникающих мутаций вредны, поэтому мутация, повышающая темп мутагенеза, в краткосрочной перспективе приносит больше вреда, чем пользы, и отбор, по идее, должен действовать против нее.

Почему же аллели-мутаторы все-таки распространяются? Дело в том, что в бесполой популяции они часто спасаются от отбраковки благодаря эффекту, который называют генетическим автостопом. Если какой-то гипермутабельной бактерии повезет и у нее появится редкая и очень полезная мутация, отбор начнет поддерживать последнюю. При этом вместе с полезной мутацией будет автоматически распространяться и сидящий в том же геноме аллель-мутатор. Он будет, подобно пассажиру-безбилетнику, ехать прицепом к хромосоме, распространение которой в генофонде популяции «оплачено» полезной мутацией. А все потому, что в бесполой популяции, где нет перетасовки генов и хромосомных участков между отдельными клетками, отбираться могут только целые геномы, но не отдельные гены.

В популяции, способной к генетическому обмену, ситуация будет иной. Связка мутатора с полезной мутацией не будет неразрывной, что позволит отбору работать с ними индивидуально. В итоге отбор сможет закрепить полезную мутацию и отбраковать породивший ее аллель-мутатор (см. Исследование № 7). Но это пока лишь теория: эволюционный эксперимент на организмах, способных к генетическому обмену, сопоставимый по масштабу с экспериментом Ленски, еще не поставлен.

Итак, мы увидели, что предела приспособленности, по всей видимости, нет. Об этом нам говорят экспериментальные данные. Этот вывод кажется контринтуитивным, потому что «высшую точку» приспособленности можно легко себе представить как нечто реальное и достижимое. Казалось бы, для заданных постоянных условий должно существовать некое оптимальное, наиболее приспособленное состояние — такое, что у организма, его достигшего, никакая мутация уже не сможет повысить приспособленность. Даже если для реальной эволюционирующей популяции этот оптимум недостижим, он продолжает оставаться для биологов удобной абстракцией, упрощением, помогающим решать определенные задачи. Эволюционисты привыкли представлять себе этот оптимум в виде горной вершины на воображаемом ландшафте. Но при этом важно понимать, какие пути ведут к высшей точке, или, образно выражаясь, какой рельеф имеют склоны горы. Упрощенное понимание естественного отбора рисует нам гладкие склоны и прямой путь к вершине. Но это, очевидно, не соответствует биологическим реалиям. Благодаря стремительному развитию науки, «путь к вершине приспособленности» постепенно перестает быть абстракцией и начинает поддаваться картированию. Об этом — следующая глава.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация