Давайте снова рассмотрим траекторию света. В нулевой момент времени он находится в центральной точке пространства. Через одну секунду он уже переместился в пространстве на 300 000 км – одно деление в горизонтальной плоскости. Но в трехмерном пространственно-временном континууме он также сдвинулся на одно деление вверх. Ведь прошла одна секунда. Итак, в пространственно-временном континууме свет движется под углом 45°.
Теперь взглянем на Землю. За секунду она проходит только 30 км. Нашей планете нужно 10 000 секунд (2 часа и почти 47 минут), чтобы проделать в пространстве путь в 300 000 км. Поэтому траектория движения Земли в трехмерном пространственно-временном континууме (ее мировая линия) имеет гораздо меньший наклон, чем траектория света – всего около 20 угловых секунд (угловая секунда равна 1/3600 градуса). У стороннего наблюдателя создается впечатление, что свет движется по диагонали, а планета практически точно вверх – почти вертикально.
Пока все ясно. Но что произойдет, если добавить в схему Солнце? В нашей упрощенной схеме Солнце не движется в пространстве – его скорость равна 0 км/с. Соответственно, в трехмерном пространственно-временном континууме оно перемещается строго вертикально. Однако масса Солнца вызывает крохотное искривление пространственно-временного континуума. В результате и мировая линия луча света, и мировая линия планеты чрезвычайно слабо отклоняются. Вот как это происходит.
Диагональная мировая линия света слегка искривляется, но в течение очень недолгого времени, поскольку у него очень высокая скорость. Не пройдет и мгновения, как свет оставит далеко позади область, где пространственно-временной континуум искривлен массой Солнца. Как и раньше, он движется строго прямолинейно, в то же время смещаясь вверх под углом 45°, только теперь этот наклон имеет чуть-чуть иное направление. В проекции на двухмерную плоскость мы видим, что траектория света слегка изменилась.
Напротив, Земля остается в области искривления. Она продолжает двигаться в пространственно-временном континууме почти вертикально под одним и тем же углом 20″. Но направление этого крохотного наклона медленно, но постоянно меняется из-за искривления, создаваемого массой Солнца. По прошествии почти 8 млн секунд (около трех месяцев) направление изменится на полных 90°. В проекции на двухмерное пространство мы увидим, что планета прошла четверть своей орбиты вокруг Солнца.
Это слабое искривление! За 8 млн секунд планета переместилась на 8 млн делений «вверх» в пространственно-временном континууме. В то же время она проделала в пространстве каких-то 236 млн км. Это менее 800 делений в горизонтальной плоскости. Было бы чрезвычайно сложно заметить отклонение траектории планеты в пространственно-временном континууме невооруженным глазом – траектория представляет почти идеальную прямую.
Через год Земля совершит полный оборот вокруг Солнца, равный около 940 млн км в пространстве. На это ей потребуется 31,5 млн секунд. Спиральная мировая линия Земли в пространственно-временном континууме практически неотличима от прямой. Причина этого в том, что Солнце не является чрезвычайно массивным объектом и вызывает слабое искривление пространственно-временного континуума. Тем не менее если забыть о временнóм измерении и смотреть только на плоское двухмерное пространство, то окажется, что траектория Земли сильно отклонена – настолько, что превратилась в знакомую всем круговую орбиту. Между тем свет уже промчался почти четверть расстояния до ближайшей звезды.
_________
Понять эти вещи довольно сложно, если слышишь о них впервые, – и я даже не предлагаю вам представить четырехмерный пространственно-временной континуум. (Если вы запутались, попробуйте перечитать предыдущие страницы завтра утром или на следующей неделе.) Как бы то ни было, теперь вы понимаете, почему применительно к пространственно-временному континууму и общему принципу относительности обыденное восприятие нас подводит.
Это поучительный пример. Рассматривая сталкивающиеся ЧД, чрезвычайно сильное искривление пространственно-временного континуума и гравитационные волны, нельзя доверять интуиции. Опираться нужно на расчеты суперкомпьютера, выполненные на основе ОТО Альберта Эйнштейна. Если мы доверяем Эйнштейну, то должны соглашаться с результатами таких расчетов.
Это одна из причин восхищения Кипа Торна тем, каким получился фильм «Интерстеллар». В распоряжении компании – разработчика визуальных спецэффектов, такой как Double Negative, имеются намного более мощные компьютеры, чем у физика-теоретика из Калифорнийского технологического института. Созданные ими сцены дают таким ученым, как Торн, новые ценные идеи. В «Интерстеллар: Наука за кадром» он пишет: «Для меня эти отрывки из фильма подобны экспериментальным данным: они показывают то, что я ни за что не увидел бы самостоятельно, без моделирования»
[12].
Как поступают ученые, если у них появляются идеи? Разумеется, публикуют статью. Торн издал даже две статьи – о «кротовой норе» и о гигантской ЧД Гаргантюа из «Интерстеллар». Поищите их текст в интернете. Первая статья, озаглавленная «Визуализация кротовой норы в “Интерстеллар”» (Visualizing Interstellar’s Wormhole), была опубликована в престижном American Journal of Physics. Вторая, «Гравитационное линзирование, создаваемое вращающимися ЧД, в астрофизике и в фильме “Интерстеллар”» (Gravitational Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar) – в другом профессиональном журнале, Classical and Quantum Gravitation
[13]. Соавторами обеих статей выступили Оливер Джеймс, Юджин фон Тунцельман и Пол Франклин. Джеймс является главным научным консультантом Double Negative, фон Тунцельман – ответственный руководитель компании по компьютерной графике, а Франклин – сооснователь Double Negative и ответственный руководитель по визуальным эффектам. Физику-теоретику приятно, что его упомянули в интернет-базе кинофильмов (IMDb) в качестве исполнительного продюсера, но специалистам по спецэффектам не менее лестно их включение в arXiv.org – крупнейшее в мире электронное хранилище научных статей по физике.
_________
Торну пришлось смириться с одним небольшим разочарованием. Он надеялся, что в «Интерстелларе» будут показаны гравитационные волны – в конце концов, он стоял у истоков проекта LIGO и имел основания рассчитывать на первую прямую регистрацию этих неуловимых пульсаций пространственно-временного континуума в один год с выходом фильма на экраны. К сожалению, Кристоферу Нолану сюжетная линия и без того казалась переусложненной. Как бы то ни было, гравитационные волны – GW150914 – были впервые обнаружены только через 323 дня после официального релиза картины.