Книга Карта Вселенной, страница 44. Автор книги Приямвада Натараджан

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Карта Вселенной»

Cтраница 44

Такое равновесие (физики называют его тепловым) обладает некоторыми необычными свойствами. Представьте себе замкнутый ящик с непрозрачными стенками, способный поглощать энергию (все формы излучения, включая свет) и вещество извне. В соответствии с законами квантовой механики такой ящик в равновесном состоянии соответствует так называемому идеальному «черному телу», а кривая распределения его излучения должна определяться лишь температурой его стенок. Гамов был первым, кто понял и оценил роль теплового излучения и термического равновесия в процессе синтеза химических элементов. Поверив в его идею, Альфер и Герман сделали следующий важный шаг в исследовании, предположив, что горячая плотная ранняя Вселенная, достигнув теплового равновесия, должна вести себя подобно черному телу. Поскольку главной характеристикой черного тела является его температура, Альфер и Герман просто оценили температуру космоса, то есть температуру Вселенной в текущий момент времени. Более того, они предположили, что, даже несмотря на расширение Вселенной, приводящее к ее охлаждению, неудаляемая «подпись» ранней, нагретой Вселенной будет сохраняться в виде излучения черного тела. Присутствие этого излучения везде определяется особой формой излучения черного тела. Черное тело остается таким всегда, даже когда остывает. Поэтому Вселенная остается чернотельной и сегодня, хотя у нее более низкая температура, чем при ее огненном начале. Температуру текущего, чернотельного, состояния Вселенной Альфер и Герман оценили в 5 °К (что соответствует –268 °C). Утверждения, что Вселенная является чернотельной и что ранняя и современная Вселенные характеризуются уникальной температурой, были замечательными. Предсказанное Альфером и Германом очень низкое значение текущей температуры Вселенной противоречило интуитивным ожиданиям, но это значение оказалось очень близко к тому, которое удалось получить при экспериментальных измерениях несколькими десятилетиями позже. При этом стоит отметить, что человеческое сознание проще воспринимает лишь гораздо более высокие температуры, так как в повседневной жизни мы легко чувствуем температуру кипящей воды или поджаренного на гриле куска мяса. С другой стороны, предложенная авторами космическая температура в 5 °К оказалась также намного ниже всех привычных представлений о холоде, то есть существенно ниже не только температуры человеческого тела (примерно 310 °К), но и температуры льда, считающегося привычным эталоном холода. Однако проблема температуры была побочной, так как исходной задачей Альфера и Германа было объяснение механизма возникновения и построения атомов из вещества первичного огненного шара. Несмотря на все усилия, им удалось решить эту задачу только частично, описав рождение всего нескольких элементов тяжелее гелия. В 1948 г. они напечатали статью в журнале Nature, где привели полученные ими оценки современной температуры Вселенной, но не сумели четко обосновать свои достижения{6}. В их статье содержались основополагающие идеи, касающиеся ранней Вселенной, а также исправления некоторых ошибок, допущенных Гамовым в одной из предыдущих публикаций. Однако, как отмечалось чуть выше, им не удалось объяснить возникновение ни одного из существующих в природе стабильных изотопов с атомным числом более 5, хотя именно это было ключевым моментом в поставленной ими же проблеме. Несмотря на это, работа Альфера и Германа содержала много очень интересных новых результатов, включая расчет плотности вещества в расширяющейся Вселенной. Однако из-за отсутствия объяснения механизма рождения тяжелых атомов ее сочли ошибочной и неудачной. К несчастью, в результате этого предложенные ими в тексте статьи оценки и расчеты температуры космоса также были сочтены недостойными внимания или неверными.

Отношение к статье усложнялось еще и тем обстоятельством, что вычисленное авторами значение температуры космоса не совпадало даже с результатами, которые получили раньше Гамов и его сотрудники. Дело в том, что Гамов предпринял смелую попытку связать проблему возникновения элементов со своей предыдущей работой по формированию звезд и предположил, что температура Вселенной и межзвездного вещества должна лежать в диапазоне от 5 °К до 50 °К. Такая неопределенная оценка сделала предсказания Альфера и Германа еще менее значимыми. Исследователи, занятые проблемой происхождения элементов (Гамов, Альфер, Герман и их сотрудники), напечатали в 1948 г. 11 статей по этой тематике. Несмотря на внушительное число публикаций, ни в одной из статей авторам так и не удалось решить космохимическую проблему возникновения тяжелых химических элементов, а между тем за это время научное сообщество сумело забыть и упомянутые предсказания Альфера и Германа. Описанное «несчастное» стечение обстоятельств может служить наглядным примером того, какие сложности иногда возникают на пути признания радикальных научных идей до получения общего признания и какую важную роль в этом играют ненаучные факторы. Мы видим яркий пример того, что целое научное сообщество не замечало исключительно важный результат в течение более 20 лет, и как результат этого появилось несколько тщательно выполненных исследований, авторы которых пытались понять, каким образом могла произойти такая очевидная ошибка в оценке столь важных новаторских идей. Очевидно, что за давностью лет невозможно ex post facto восстановить все тонкости личных отношений между Альфером, Германом и другими их участниками, однако космолог Джеймс Пиблс попытался внимательно проследить историю всех этих связанных научных публикаций в своей подробной статье с удачным названием «Открытие горячего Большого взрыва: Что произошло в 1948 г.» (Discovery of the Hot Big Bang: What Happened in 1948). Этой истории посвящена книга Джона Мазера и Джона Бослоу «Самый первый Свет» (The Very First Light){7}, пытавшихся глубоко вникнуть в суть событий. Все авторы попыток их реконструкции приходят к единому выводу: Альфер и Герман действительно в своей статье 1948 г. в журнале Nature смогли первыми оценить температуру реликтового излучения и идентифицировать ее в качестве температуры Вселенной.

Рассуждая умозрительно, можно легко объяснить формальными причинами тот факт, что другие ученые не заметили ценную информацию. Прежде всего, важнейшая статья Альфера и Германа формально была посвящена вовсе не температуре космоса, а образованию химических элементов в ранней Вселенной. Вследствие чего оценка этой температуры выглядела в ней лишь побочной темой, а статья не содержала рекомендаций для поиска или регистрации этой температуры или же проверки предсказываемых значений. Впрочем, если бы кто-то и обратил внимание на статью 1948 г., это не имело бы никакого практического значения, так как предсказанное значение температуры было слишком мало для экспериментальных измерений. В результате первые серьезные попытки ее измерения начались гораздо позднее. В упомянутой книге Мазера и Бослоу отмечается, что в 1948 г. такое измерение технически было уже возможно, но сопряжено с большими сложностями. Такую попытку предпринял Роберт Дикке, физик из Принстонского университета, но он сам не заметил, что был очень близок к измерению температуры Вселенной. Дикке осуществлял проект по измерению температуры черного тела для Солнца и Луны. Он увидел, что при измерениях теплового излучения возникают ошибки, связанные с влиянием земной атмосферы. Дикке и трое его коллег в 1946 г. (то есть еще за два года до «взрыва» публикаций группы Гамова, Альфера и Германа) опубликовали на эту тему специальную статью, где сообщали: уровень излучения подразумевает, что температура верхней атмосферы не превышает 20 °К (примерно –253 °C). Авторы статьи также сочли соответствующий этой температуре сигнал слишком слабым для прямой регистрации радиометром{8}. Дикке, пытавшийся провести такие же измерения во Флориде, потерпел неудачу и вскоре вообще потерял интерес к проблеме. Так как сама идея существования некоей температуры космоса оставалась неясной в общей схеме понятий астрофизики, ее игнорировали долгое время. Кроме того, за температуру космоса зачастую принимали температуру верхней атмосферы или межзвездного вещества. Недостаток концептуальной ясности в предмете исследований также не способствовал успеху исследований. По иронии судьбы, как мы увидим ниже, именно Дикке изобрел прибор, позволивший провести важнейшие измерения!

Вход
Поиск по сайту
Ищем:
Календарь
Навигация