Книга Она смеется, как мать, страница 46. Автор книги Карл Циммер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Она смеется, как мать»

Cтраница 46
Часть II. Своенравная ДНК
Глава 5
Пьяная походка

В 1901 г. Уильям Бэтсон отправил в Королевское общество срочное сообщение о «явлениях наследственности». Эти явления, объяснял Бэтсон, убедительно свидетельствуют в пользу заново открытой и лишь сейчас оцененной по достоинству работы Грегора Менделя. Бэтсон вместе с другими учеными подтвердил наблюдаемые Менделем закономерности. По мнению исследователя, эти закономерности настолько достоверные и важные, что заслуживают высочайшего научного титула: их следует назвать законом Менделя [342].

Научные законы описывают некоторые закономерности во Вселенной обычно с помощью короткого изящного уравнения. Исаак Ньютон открыл законы движения, получившие его имя. Имя Роберта Бойля увековечено в законе Бойля, связывающем объем и давление газа. Работа Менделя позволяет выразить наследственность тоже количественно. У родителей есть равные шансы передать потомкам одну из двух копий какого-то определенного гена. Закон Менделя гласит, что доминантные и рецессивные признаки будут проявляться у потомков в соотношении «три к одному». И неважно, идет ли речь о морщинистой форме горошин или фенилкетонурии у людей. Значения будут одинаковы.

Безусловно, открытие Менделя – одно из важнейших в науке. Но эта закономерность на самом деле не представляет собой универсальный закон. Законы движения Ньютона будут так же верны в далекой галактике, как и здесь, на Земле. Они выполнялись 13 млрд лет назад, в младенчестве Вселенной, и выполняются до сих пор. У закона Менделя более узкие рамки. Он работает лишь там, где существует жизнь, – т. е., насколько нам известно, только на нашей планете. При этом, когда около 4 млрд лет назад жизнь появилась в виде одноклеточных микроорганизмов, закон Менделя еще не существовал. Микроорганизмы совсем не похожи на горох и людей, и поэтому у них нет ни доминантных, ни рецессивных признаков.

Закону Менделя пришлось ждать пару миллиардов лет, пока не появилась новая форма жизни, давшая начало растениям, грибам и животным, в том числе и нам. Другими словами, закон Менделя имеет больше общего с нашими селезенками или сетчатками, чем с законом Бойля. Он появился в ходе эволюции жизни. На Земле обустроилось множество разных видов наследственности, каждая из которых возникла в результате естественного отбора и счастливой случайности.

__________

По всей видимости, жизнь появилась, как только первые, простые химические вещества начали усложняться [343]. На самых ранних этапах существования Земли на ней уже были аминокислоты, азотистые основания и другие молекулярные кирпичики. Состоящие из этих компонентов короткие цепочки скопились рядышком, возможно, на дне моря они были окружены пленочкой липидов или заперты в пузырьки, похожие на клетки. В этих замкнутых пространствах химические процессы ускорились настолько, что смогли преодолеть барьер, отделяющий живое от неживого.

Скорее всего, первые живые организмы были непохожи на те, что мы видим сейчас. В наше время животные, растения, бактерии – т. е. все клеточные формы жизни – хранят свою генетическую информацию в виде ДНК. Однако ДНК не самый лучший кандидат на роль первой молекулы наследственности, так как она слишком беспомощна и требовательна.

Чтобы клетка могла считывать хранящуюся в ДНК информацию, ей необходимы множество белков и РНК. Когда клетка делится, армия других молекул создает копию ее ДНК. Едва появившаяся на Земле жизнь должна была быть устроена проще.

По одной из версий, жизнь начиналась без ДНК и белков. Она полагалась только на молекулы РНК. Первичная клетка могла содержать несколько разных типов коротких РНК, которые помогали копировать друг друга.

Эксперименты, проведенные с РНК, показывают, как это могло происходить. Одна молекула РНК способна захватывать азотистые основания и соединять их вместе, используя вторую молекулу РНК как образец. Вторая молекула может делать то же самое по отношению к третьей. Если последняя в этом ряду РНК помогает копировать первую, то круг замыкается. У таких древних РНК два типа наследственных признаков: от предков они получают собственно генетическую информацию, а также определенную форму, которая позволяет им создавать новые молекулы.

Такая первая наследственность была довольно неточной. Иногда новые молекулы РНК содержали некоторые отличия от образца. Часто эта ошибка оказывалась фатальной, поскольку нарушалась способность молекулы РНК создавать свои копии. Но в некоторых случаях эти изменения ускоряли происходящие химические процессы. Клетки, которые размножались быстрее, обгоняли своих медлительных соперников.

Жизнь на основе РНК могла существовать в океане или приливно-отливной зоне, там же могли находиться и свободные аминокислоты. По мере того как РНК эволюционировала, она принимала все более сложные формы, и некоторые из этих структур, возможно, начали соединять аминокислоты в короткие цепочки, которые мы сейчас называем пептидами. Пептиды могли выполнять работу внутри клеток. Со временем короткие пептиды превратились в крупные, сложноустроенные белки.

Кроме того, основанная на РНК жизнь могла в процессе эволюции создать также и молекулу ДНК. Двухцепочечная молекула ДНК более стабильна, чем одноцепочечная РНК, и менее подвержена повреждениям. Когда первые организмы с ДНК копировали свои гены, они допускали меньше ошибок. Такая новообретенная точность могла способствовать созданию более сложных форм, поскольку снизился риск летальных мутаций.

Как только жизнь, основанная на ДНК, укрепилась, она заполнила всю планету. Примерно 3,5 млрд лет назад микроорганизмы разделились на две эволюционные ветви: бактерии и археи. Их почти невозможно отличить друг от друга под микроскопом, но у них есть очень важные различия в биохимических процессах. Например, бактерии и археи используют разные молекулы для построения клеточных стенок и разные молекулы для работы с генами.

Однако обе эти линии микроорганизмов оказались удивительно гибки, приспособившись жить в каждом уголке земли, где есть вода и энергия. Микроорганизмы адаптировались для жизни на поверхности океана, где они улавливают солнечный свет, на морском дне, где потребляют серу и железо, глубоко в земле, где используют энергию радиоактивного распада… По оценкам ученых, на Земле проживает около миллиона миллиардов миллиардов микроорганизмов, которые образуют триллион разных видов [344].

И ни у кого из них не соблюдается закон Менделя.

Типичный микроорганизм, скажем, кишечная палочка (Escherichia coli), обитающая в вашем кишечнике, имеет только одну хромосому: длинную кольцевую молекулу ДНК. На ней расположено несколько тысяч генов. Если E. coli может получать глюкозу или другой сахар из вашего завтрака, она может и расти, пока не будет готова к делению. Тогда кольцевая ДНК изящно расплетается на две нити. На каждой из них строится вторая, в итоге создаются две почти идентичные хромосомы. Затем клетка делится надвое. Она растаскивает обе хромосомы по своим противоположным сторонам, а затем посередине выстраивает стенку. Каждая новая кишечная палочка оказывается почти идеальной копией своего родителя и наследует одну хромосому, а также около половины молекул родительской клетки.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация