В конце концов Хесс понял, что подводные горные цепи образованы магмой, которая просачивалась через трещины в океанической коре. Это звучало разумно, потому что океаническая кора тоньше континентальной, так что горячей магме пробиться через нее легко. Пробираясь через подводные трещины, она расталкивала кору и формировала новое дно, где отпечатались следы магнитного поля, каким оно было в это время. Разная намагниченность срединно-океанических горных пород позволила датировать образование подводных горных кряжей.
В этих открытиях скрывалась причина континентального дрейфа, которую тщетно искал Вегенер. Горные цепи, континенты и морское дно образовались и перемещались благодаря тому, что из мантии Земли поднималось и просачивалось через глубоководные трещины в коре гигантское количество горячей магмы. Магму подогревали радиоактивные элементы и тепло земного ядра, где сохранилась бóльшая часть энергии, запасенной в ходе бурных процессов аккреции и формирования Земли. Здесь, в ядре планеты, и скрывалась недостающая движущая сила. Подобно термоядерным реакциям в центре звезды, жар, проникающий из середины Земли, управляет большинством важных геологических процессов на поверхности.
Сегодня есть масса свидетельств того, что земная кора, как океаническая, так и континентальная, разбита на отдельные плиты и те толкаются в борьбе за место, потому что полурасплавленная магма, на которой они плавают, таскает их туда-сюда. Скрытая корой горячая магма в глубине Земли циркулирует, как вода, кипящая в кастрюле. Эти конвекционные потоки полужидких каменных пород и лавы и есть то, что движет тектоническими плитами на поверхности. Внимательно исследуя палеомагнитные полосы, ученые сумели проследить за движением плит на протяжении сотен миллионов лет, и в итоге мы получаем все более точное представление об изменениях географии Земли примерно за последний миллиард лет. Теперь мы знаем, что благодаря этому движению несколько раз циклически образовывались и разделялись суперконтиненты, такие как Пангея, и этот процесс, вероятно, идет с начала протерозойского эона, уже около 2,5 млрд лет. До того, скорее всего, крупных континентов не было. Однако некоторые геологи считают, что механизм тектоники плит мог запуститься гораздо раньше. Есть относящиеся к гадейскому эону данные, которые предполагают, что в некотором виде тектоника плит действовала уже 4,4 млрд лет назад, когда сформировались отдельные слои Земли
[77].
Как и космология Большого взрыва, тектоника плит оказалась сильной объединяющей идеей. С ее помощью удалось объяснить и продемонстрировать связи между множеством разных процессов, начиная с землетрясений и заканчивая образованием гор и движением континентов. Она позволяет понять, почему столько мощных геологических явлений наблюдается в местах, где тектонические плиты встречаются и прокладывают себе дорогу друг мимо друга, друг по другу или друг под другом. Тектоника плит также объясняет, почему поверхность планеты столь динамично меняется – ведь она постоянно обновляется поступающим из мантии новым материалом, а то, что покрывает ее поверхность, в свою очередь, опускается в недра Земли.
Чтобы лучше разобраться в том, как действует тектоника плит, нужно рассмотреть границы между ними. На дивергентных границах, подобных тем, что описал Гарри Хесс, вещество из мантии поднимается и отталкивает плиты друг от друга. Но в другом месте, на конвергентных границах, плиты друг к другу подталкиваются. Если у двух плит примерно одинаковая плотность – скажем, это две гранитные литосферные плиты, – они встают на дыбы, как два моржа в схватке за самку. Так образовались Гималаи: за последние 50 млн лет стремительная Индийская плита прошла из Антарктики на север и врезалась в Евразийскую плиту. Но если у двух сближающихся плит разная плотность, например одна состоит из тяжелых базальтовых пород океанической коры, а другая – из более легких континентальных гранитов, все будет иначе. Более тяжелая океаническая плита в зоне субдукции нырнет под более легкую. Она переместится вниз, как сорвавшийся лифт, который проламывает бетонный пол, и унесет породы коры обратно в мантию, где они растворятся. Погружающаяся плита, пытаясь пробурить себе путь в мантию, создаст такое сильное трение и нагрев, что может расплавить и разделить кору над собой, выдавив вверх новые цепи вулканических гор. Так образовались Анды, когда Тихоокеанская плита ушла под ту, что несет на себе западный берег Южной Америки.
Наконец, существуют трансформные границы. Здесь плиты впритирку проходят мимо друг друга, как два кусочка наждачной бумаги, которые плотно соединили и тянут в разные стороны. Трение будет сдерживать скольжение плит, а затем давление вырастет настолько, что неожиданно произойдет резкий рывок. По этим причинам нарастает давление вдоль разлома Сан-Андреас на западном побережье Северной Америки (когда я одно время жил в Сан-Диего, то периодически чувствовал толчки, и, как и многим в Калифорнии, мне пришлось купить страховку от землетрясений).
Циркуляция веществ между атмосферой, поверхностью и мантией Земли серьезно повлияла на химический состав верхних слоев планеты. Она привела к появлению новых типов горных пород и минералов. К тому времени, как жизнь заселила сушу, в результате химических процессов в мантии образовалось уже 1500 отдельных видов минералов
[78]. Благодаря тектонике плит планета Земля исключительно динамична химически и геологически.
Тектоника плит также повлияла на температуры на поверхности молодой планеты, а мы уже видели, какую роль они играют в истории жизни на Земле. Средняя температура ее поверхности определяется двумя основными факторами – теплом внутри планеты и солнечным теплом. Их можно примерно рассчитать. Но состав атмосферы позволяет определить, сколько тепла остается на поверхности Земли, а сколько уходит в космос. Особенно важна доля парниковых газов. Это такие газы, как углекислый газ и метан, которые удерживают энергию солнечного света, а не отражают ее. В целом, если парниковых газов много, на Земле становится теплее. От чего же зависит их количество?
Астроном Карл Саган (один из великих первопроходцев в создании современной истории происхождения мира) отмечал, что ответ на этот вопрос жизненно важен, потому что он может разрешить другую загадку. Такие звезды, как наше Солнце, по мере старения испускают все больше энергии, и количество тепла, поступающего на Землю, постепенно увеличивается. Когда планета была молодой, Солнце излучало на 30 % меньше энергии, чем теперь. Так почему же в начале своего существования Земля не была ледяным шаром, слишком холодным, чтобы на нем могла возникнуть жизнь, таким как нынешний Марс? Карл Саган назвал это парадоксом слабого молодого Солнца.
Как оказалось, ответ состоит в количестве парниковых газов в древней атмосфере. Их было столько, что Земля смогла нагреться достаточно для появления жизни. Едва ли в первой ее атмосфере был свободный кислород, но парниковых газов было много, особенно водяного пара, метана и углекислого газа – их извергали из мантии вулканы или поставляли астероиды. Парниковая атмосфера была еще одним важным условием Златовласки для жизни на молодой Земле.