Возможно ли вытеснение человека?
Если машины научатся прогнозировать поведение людей, вытеснят ли они собой человека полностью? С учетом нынешней тенденции развития прогностических машин – вряд ли. Согласно элементарным правилам экономики, люди в качестве ресурса будут вносить какой-то вклад в любой вид деятельности. Вопрос скорее в том, низкой или высокой ценностью он будет обладать и насколько станет интересным. Чем должны заниматься сотрудники вашей организации? На какие качества обращать внимание при наборе нового персонала?
Прогноз основывается на данных, поэтому у людей два преимущества перед машинами. Нам известно кое-что, чего машины не знают (пока), и, что еще важнее, мы умеем лучше принимать решения при ограниченном объеме данных.
Люди обладают тремя типами данных, которых нет у машин. Во-первых, органы чувств: глаза, уши, нос и кожа по многим показателям пока еще превосходят машинные датчики. Во-вторых, люди определяют свои предпочтения самостоятельно. Данные о потребителях представляют огромную ценность, потому что необходимы машинам для выяснения этих предпочтений. Супермаркеты делают скидку по карте постоянного покупателя, чтобы собрать данные о пожеланиях клиентов. Магазины платят деньги за опросы. Google, Facebook и другие компании предоставляют бесплатные услуги в обмен на данные, которые можно использовать для целенаправленной рекламы. И, в-третьих, соблюдение конфиденциальности требует ограничить доступные машинам данные. Пока люди сохраняют в тайне свою частную жизнь, материальное положение, психические отклонения и крамольные мысли, у прогностических машин не будет достаточно данных для прогнозирования поведения. При отсутствии качественных данных наше восприятие других людей обеспечит востребованность умения судить и оценивать, недоступное машинам.
Прогноз с недостаточными данными
Прогностическим машинам не хватает данных по нечасто происходящим событиям. Если у машин недостаточно примеров человеческих решений, они не могут предусмотреть суждение, лежащее в их основе.
В главе 4 мы обсуждали «известные неизвестные» – редко встречающиеся события, которые cложно прогнозировать из-за недостатка данных, такие как президентские выборы или землетрясения. В некоторых случаях люди дают качественный прогноз таких событий: например, мы узнаем человека в лицо, даже если он постареет. Там же мы обсуждали «неизвестные неизвестные», которые по определению не поддаются прогнозированию, и непонятно, как на них реагировать. ИИ не может прогнозировать действия человека, если тот никогда не попадал в похожую ситуацию. Поэтому ИИ не способен дать прогноз стратегического направления компании в свете появления новых технологий, таких как интернет, биоинженерия или собственно ИИ. А люди умеют проводить аналогии или обнаруживать полезное сходство в самых различных контекстах.
Когда-нибудь прогностические машины продвинутся в аналогиях. Но пока они не способны прогнозировать редко происходящие события. В обозримом будущем прогнозированием и суждением в нестандартных ситуациях будут заниматься люди.
В главе 4 мы отдельно подчеркнули «неизвестные известные». Это, к примеру, трудности в принятии решения о том, рекомендовать ли данную книгу друзьям, даже если вы достигнете невообразимых успехов в управлении ИИ. Сложность заключается в отсутствии данных о том, что произошло бы, если бы вы ее не прочитали. Если хотите разобраться, что именно служит причиной чего бы то ни было, необходимо знать развитие событий вследствие иных действий.
У людей есть два решения этой проблемы: эксперименты и моделирование. Если ситуация возникает достаточно часто, можно провести рандомизированное контролируемое испытание. Наберите людей в экспериментальную группу (заставьте прочитать книгу или хотя бы раздайте всем и затем проэкзаменуйте на знание материала) и контрольную (не разрешайте читать книгу или просто не рекламируйте). Через некоторое время проверьте, как они применяют ИИ в своей работе. Сравните результаты двух групп. Разница между экспериментальной и контрольной группами и станет результатом прочтения всей книги.
Такие эксперименты весьма эффективны. Без них не одобряют новые лекарственные препараты. Благодаря им принимают решения работающие с данными компании, от Google до Capital One. Машины тоже могут проводить эксперименты. При достаточной частоте событий способность экспериментировать присуща не только людям.
Машины экспериментируют и учатся причинно-следственной связи на примерах, как и люди. Это основная причина, по которой машины обыгрывают человека в видеоиграх.
Моделирование – альтернатива экспериментам – заключается в глубоком понимании ситуации и процессов, генерирующих имеющиеся данные. Оно особенно пригодится, когда эксперименты невозможны из-за недостаточной частоты ситуации или высоких издержек.
Решение ZipRecruiter по ценообразованию, описанное нами ранее, состоит из двух частей. Первая – это определение «оптимальной» цены: краткосрочный доход или долгосрочные перспективы? Больше соискателей и рекламодателей или высокие цены? Вторая – выбор конкретной цены. Для решения этой задачи использовали эксперимент. Его придумали квалифицированные специалисты, но теоретически с развитием ИИ и при достаточном количестве рекламодателей и времени такие эксперименты можно автоматизировать.
Гораздо сложнее автоматизировать определение значения «оптимальный». Поскольку число соискателей зависит от количества объявлений о вакансиях и наоборот, результат наблюдений рынка только один. Если ошибиться, ZipRecruiter может обанкротиться и не получить второй шанс. Поэтому она использовала бизнес-моделирование: изучила последствия увеличения краткосрочной выгоды и сравнила с альтернативной моделью, целью которой было увеличение выгоды за долгий срок. При отсутствии данных моделирование исходов и разработка функции вознаграждения осуществляются людьми, пусть даже только самыми компетентными.
Моделирование помогло странам – союзникам СССР проводить воздушные атаки во время Второй мировой войны. Инженеры придумали, как лучше оснастить бомбардировщики, увеличив грузоподъемность самолетов без потери летных качеств. Вопрос заключался в том, какие части самолетов требуется защитить. Эксперименты были возможны, но ценой крупных издержек. Они стоили бы пилотам жизни.
Инженеры осматривали каждый бомбардировщик, вернувшийся с воздушной атаки на Германию. Данными для них служили пулевые отверстия. Но там ли следовало укреплять обшивку?
За оценкой проблемы обратились к статистику Абрахаму Вальду
[75]. После размышлений и подробных расчетов он порекомендовал установить защиту на те части обшивки самолетов, куда пули не попадали. Может быть, Вальд что-то перепутал? Его совет противоречил здравому смыслу. Возможно, он имел в виду «на места, куда пули попали»? Нет. Он смоделировал процесс генерации данных. Зная, что некоторые самолеты были подбиты, он предположил, что смертоносные пули должны были попасть в другие части обшивки, ведь уцелевшим самолетам они не нанесли существенного урона. С учетом этого авиационные инженеры укрепили обшивку, и бомбардировщики теперь защищены лучше
[76].