Tesla только что разослала на свои автомобили обновление, с помощью которого автопилот сможет использовать информацию с радара и четко представить обстановку впереди машины
[85]. Функция Tesla сработала в беспилотном режиме, но легко вообразить, как машина берет управление на себя в случае угрозы аварии. Автопроизводители США заключили соглашение с Министерством транспорта о разработке стандарта систем автоматического экстренного торможения к 2022 году
[86].
Граница между ИИ и автоматическим управлением, как правило, размыта. Автоматическое управление начинается, когда машина берет на себя выполнение задачи, а не только прогноз. Сегодня человеку приходится периодически вмешиваться в процесс управления автомобилем. Когда же он будет полностью автоматизирован?
В своем нынешнем воплощении ИИ машина выполняет одну функцию – прогностическую. Остальные функции дополняют ее, и их ценность возрастает с удешевлением прогнозов. На целесообразность полностью автоматического управления влияет относительная отдача от выполнения машинами других функций.
Люди и машины могут накапливать разные типы данных: входные, обучающие и обратной связи. Суждение полностью возложено на человека, но он способен закодировать суждение и внести его в программу до составления машиной прогноза. Или машина может научиться прогнозировать человеческое суждение на данных обратной связи, что заставляет нас действовать. В каких случаях суждения о действиях следует поручить машинам вместо людей? Или, точнее, когда тот факт, что прогнозированием занимается машина, повышает отдачу от совершения действия машиной, а не человеком? Следует определить отдачу от выполнения машинами других функций (сбор данных, суждение, действия), чтобы решить, должно быть или будет ли выполнение задачи полностью автоматизированным.
Невидящий взор
Провинциальный австралийский регион Пилбара богат железной рудой. Большинство шахт находятся более чем в полутора тысячах километров от ближайшего крупного города – Перта. Шахтеров, чьи смены длятся неделями, доставляют на работу самолетами, поэтому у них высокая зарплата и в их условия труда вложены немалые средства. Естественно, что компании стараются извлечь из работников максимальную пользу.
Крупные железорудные шахты горнопромышленного гиганта Rio Tinto обладают огромной капиталоемкостью, и не только с финансовой точки зрения, но и по своему размеру. Руду добывают из земли в таких объемах, что остаются ямы, превосходящие размерами метеоритные кратеры. Основная задача заключается в транспортировке на тысячи километров на север, в порт, руды на грузовиках размером с двухэтажный дом, и не только из выработки, но и до ближайшей железной дороги. Следовательно, дороже всего компании обходятся не люди, а простой.
Разумеется, компании пытались оптимизировать работу с помощью ночной транспортировки. Однако даже привычные к ночным сменам люди в это время суток не так работоспособны, как днем. Изначально Rio Tinto решала некоторые проблемы перераспределения человеческих ресурсов, используя грузовики, которые можно было контролировать из Перта удаленно
[87]. Но в 2016 году компания сделала шаг вперед и внедрила 75 автономно функционирующих беспилотных грузовиков: такая автоматизация уже сэкономила компании 15 % производственных издержек
[88]. Грузовики обслуживают шахты круглосуточно, без перерывов на остановки и без кондиционеров – дневная температура порой поднимается до +50°C. И наконец, без водителя не имеет значения, ехать грузовику вперед или назад, то есть ему не приходится разворачиваться, что дает дополнительную экономию во всем, что касается безопасности, пространства, техобслуживания и скорости.
Это стало возможным благодаря способности ИИ прогнозировать трудности на пути грузовиков и маршрут к рудникам. Для обеспечения безопасности уже не нужно контролировать грузовики на месте и даже удаленно, а чем меньше людей рядом, тем ниже риск производственных травм. И это не предел – канадские горнодобывающие компании рассматривают возможность применения роботов на основе ИИ для раскопок, а австралийские собираются автоматизировать всю цепочку от земли до порта (в том числе землеройные машины, бульдозеры и поезда).
В сфере добычи полезных ископаемых образовалась идеальная возможность полной автоматизации именно потому, что от многих действий люди уже отстранены – за ними сохранились только важные функции управления. До недавнего прогресса в ИИ все (за исключением прогнозов) уже можно было автоматизировать. Прогностические машины становятся завершающим этапом отстранения людей от многих задач.
Ранее человек оценивал обстановку и давал машине точные указания, как действовать. Теперь же ИИ считывает информацию с датчиков и учится прогнозировать препятствия для разработки маршрута. Поскольку прогностическая машина способна прогнозировать свободную дорогу, горнодобывающим компаниям люди для этого больше не нужны.
Если последней человеческой функцией в выполнении задачи станет прогноз, то, как только прогностические машины научатся выполнять его так же качественно, как и люди, человека из этого уравнения вычеркнут. Однако, как мы вскоре убедимся, очень немногие задачи так же четко определены, как в описанном примере. В большинстве автоматически принимаемых решений наличие машинного прогноза не всегда означает, что устранить человеческое суждение и заменить его машинными решениями или использовать для выполнения действий робота вместо человека выгодно.
Думать нет времени и необходимости
Беспилотные автомобили, такие как Tesla, появились благодаря прогностическим машинам. Но использовать их для создания автоматической версии человека с целью замены его машинным контролем над транспортным средством – совсем другое дело. Логика ясна: между моментом прогноза аварии и требуемым действием человек не успеет ничего осмыслить и предпринять («думать нет времени»), а реакцию машины запрограммировать достаточно легко. Когда необходимо действовать быстро, выгода от передачи контроля машине высока.