Его дальнейшая пропаганда более эффективных верхнебойных колес несколько замедлила распространение паровых двигателей, а эксперименты Смитона (с помощью которых он рассчитал, что мощность колеса пропорциональна кубу скорости течения) определили планку эффективности для верхнебойных колес в 52–76 % (среднее 66 %) по сравнению с 32 % для лучших нижнебойных (Smeaton 1759). Современный теоретический анализ эффективности водяных мельниц (Denny 2004) дал очень похожие результаты: 71 % для верхнебойных колес, 30 % для нижнебойных и около 50 % для устройств Понселе. Качественно сконструированное и находящееся в хорошем состоянии верхнебойное колесо XX века имело потенциал эффективности в 90 % и могло превратить до 85 % кинетической энергии в полезную работу (Muller and Kauppert 2004), но реально достижимый уровень составлял 60–70 %; лучшие немецкие цельнометаллические колеса, разработанные и изготовленные в 1930-х годах, достигали эффективности в 76 % (Muller 1939).
Нижнебойные колеса можно было разместить прямо в потоке, но при этом увеличивалась вероятность поломок. Среднебойные и верхнебойные колеса требовали регулируемой подачи воды, и обычно ее организовывали с помощью дамбы, перегораживающей часть потока и канала, подводящего воду к колесу. В районах с низкими или нерегулярными осадками обычно создавали пруды, используя для этого плотины. Ничуть не меньше внимания приходилось уделять вопросу, как вернуть воду в поток: движущаяся обратно вода препятствовала бы вращению колеса. А кроме того, выложенные плиткой отводные каналы требовались, чтобы предотвратить заиливание. Даже в Англии колеса, валы и передачи до начала XVIII века делались из дерева. Позже для втулок и валов все чаще стали использовать чугун. Первое цельнометаллическое колесо было создано в начале XIX столетия (Crossely 1990). Помимо стационарных колес существовали куда менее распространенные плавающие колеса, установленные на баржах, и приливные мельницы. Плавающие мельницы для зерна успешно использовали первый раз на Тибре в 537 году, когда Рим осаждали готы, перерезавшие акведук, питавший городские мельницы.
Они были обычным зрелищем в городах средневековой Европы, и многие сохранились до XVIII века. Использование прерывистой мощности моря впервые отмечено в документах в Басре в X веке. На протяжении Средних веков маленькие приливные мельницы строили в Англии, Нидерландах, Бретани и на Атлантическом побережье Иберийского полуострова; позже они появились в Северной Америке и на Карибах (Minchinton and Meigs 1980). Возможно, самой важной и дольше всего работавшей машиной на приливной энергии была та, что поставляла питьевую воду в Лондон. Первые большие вертикальные приливные колеса, установленные после 1588 года, уничтожил пожар в 1666-м, но их преемники работали до 1822 года (Jenkins 1936). Три колеса, приводимых в движение водой, проходившей через сужающиеся арки старого Лондонского моста, вращались в любом направлении (другие обычно работали только в прилив) и давали энергию 52 водяным помпам, поднимавшим 600 тысяч литров воды на высоту в 36 метров.
Но главной сферой, где применялась энергия воды, оставался обмолот зерна: в средневековой Англии на него приходилось около 90 % всей мельничной работы, большая часть от оставшегося шла на раскатывание сукна (распушение и утончение шерсти), и только 1 % – на прочие производственные нужды (Lucas 2005). Позднее в Средневековье стали широко применять водяную энергию в дроблении руды и ее плавке (меха в домнах), в распиле дерева и камня, выдавливании масла, изготовлении бумаги и проволоки, дублении, штамповке, резке, шлифовке металла, в черной металлургии и обработке керамики. Английские водяные мельницы также использовались для вентиляции и откачки воды в шахтах (Woodall 1982; Clavering 1995).
Все эти задачи выполнялись с помощью водяных колес, чья эффективность была выше, чем у людей или животных, а следовательно, и трудовая продуктивность оказывалась лучше. Более того, не имевшая прецедентов мощность, постоянство и надежность поставляемой энергии открывали новые производственные возможности. Особенно широкими они оказались в горном деле и металлургии. Несомненно, энергетические основания западной индустриализации покоятся в значительной степени именно на таком использовании водяных мельниц. Мускулы людей и животных никогда не могли выдавать энергию такой концентрации, так постоянно и надежно, как было необходимо для решения бесконечного числа задач в разных отраслях промышленности. Хотя для обычных мельниц требовалось долгое время, чтобы превысить объем мощности, выдаваемый большой группой запряженных животных.
Столетиями единственный способ получить больше мощности сводился к тому, чтобы собрать в одном месте много меньших ее единиц. Самый известный пример такой концентрации – знаменитый римский ряд из мельниц у Барбегаля, неподалеку от Арля, где 16 колес, каждое мощностью в 2 кВт, вместе давали свыше 30 кВт (Sellin 1983). Исследователи (Greene 2000, 39) назвали его «величайшим из известных сосредоточением механической энергии античного мира» и описали (Hodge 1990, 106) как «нечто такое, что если верить учебникам, никогда не существовало – аутентичная, римская, питаемая энергией воды линия массового производства». Но взгляд с близкого расстояния открывает куда менее впечатляющую реальность (примечание 4.7).
В любом случае, более крупные водяные мельницы оставались редкостью долгое время. Даже в первые десятилетия XVIII века средняя мощность европейских водяных мельниц составляла 4 кВт. Только несколько превосходили 7 кВт, а результатом плохого качества механических соединений (высокое трение) были большие потери энергии. Даже сильнее всего восхищавшие современников машины того времени – 14 больших мельниц (диаметр колес 12 м), поставленных на Сене у Марли между 1680 и 1688 годами – не справлялись с задачей качать воду для 1400 фонтанов и водопадов в Версале. Потенциальная энергия комплекса была почти 750 кВт, но неэффективная передача вращательного движения (для чего использовалось множество возвратно-поступательных валов) снижала выход полезной энергии до всего лишь 52 кВт, чего не хватало на все фонтаны (Brandstetter 2005).
Примечание 4.7. Водяные мельницы Барбегаля
Вода для 16 верхнебойных колес Барбегаля (наиболее вероятное время создания комплекса – начало II века н. э.) подводилась от ближайшего акведука двумя каналами по склону в 30° (Benoit 1940). Ранее исследователи (Sagui 1948) использовали малореалистичные предположения (поток воды в 1000 л/с, скорость в 2,5 м/с, средняя продуктивность в 24 т зерна в день), чтобы сделать вывод, что здесь производили достаточно муки для выпечки хлеба на 80 тысяч человек. Но новые исследования (Sellin 1983) с более реалистичными цифрами (поток воды в 300 л/с, скорость около 1 м/с) позволили определить, что каждое колесо производило около 2 кВт полезной мощности, откуда получаем всего 32 кВт и (при 50 % эффективности) дневной выход в 4,5 тонны муки.
Но даже во второй работе принято предположение, что 65 % кинетической энергии воды преобразуется в кинетическую энергию вращающегося жернова, когда расчеты Смитона (1759) показали максимальную эффективность в 63 % для куда лучше сконструированного верхнебойного колеса XVIII века. Комбинация более слабого потока (Leveau (2006) утверждает, что он колебался между 240–260 л/с) и более низкой эффективности (возьмем 55 %) уменьшает значение мощности до 1,5 кВт на единицу. Это равнялось совместной мощности трех (или четырех слабых) римских лошадей, запряженных в лебедку, и было достаточно, чтобы произвести в день 3,4 тонны муки на прокорм 11 тысяч человек. Определенно более высокая эффективность, чем у обычной мельницы II века н. э., но меньше, чем требуется для по-настоящему массового производства.