Книга Искусственный интеллект, страница 41. Автор книги Мередит Бруссард

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Искусственный интеллект»

Cтраница 41

Искусственный интеллект

Решение кроется в том, что нам заранее известны препятствия и мы помогаем Карелу обойти их. Программист видит сетку, которая одновременно является картой мира Карела. Эта сетка хранится в памяти Карела, он как бы ее «представляет». Именно таким подходом воспользовалась команда Университета Карнеги – Меллона, чтобы построить свою беспилотную машину. При помощи лазерного радара, камер и сенсоров генерировалась трехмерная карта окружающего пространства. В ней не было «объектов», подлежащих «распознаванию», скорее, в ней были зоны, где можно и нельзя передвигаться, которые система идентифицировала при помощи машинного обучения. Объекты вроде машин представали в виде трехмерных шаров. Последние были препятствиями, подобно тем, что мы видели в задаче с роботом Карелом.

Это превосходное решение, поскольку оно позволяет резко сократить количество переменных, которые Boss или Junior необходимо учитывать. «Малышу Бену» приходилось идентифицировать все объекты в поле зрения – дороги, пешеходов, здания и дорожные конусы – и затем прогнозировать, где объект окажется в ближайшем будущем. Таким образом, каждое предположение требовало решения сложных уравнений. Boss и Junior не нужно было этого делать, в них уже была загружена трехмерная карта местности и дорога, по которой следует проехать, а при помощи машинного обучения они определяли, по каким конкретно частям карты можно ехать, а по каким – нет. Подход, примененный при разработке Boss и Junior, – это слабый ИИ, опирающийся на технологии качественного картирования.

Машина самостоятельно двигалась согласно созданной ею же карте местности. По сути, у нее была своя сетка, как у Карела. Системе оставалось лишь объезжать препятствия. Если в изначальной карте не было дорожного конуса, он учитывался постфактум. Если же он был, то распознавался как статичный объект и вычислялся заранее – это избавляло процессор от идентификации объекта во время движения.

У команды Университета Карнеги было преимущество, поскольку к тому моменту она уже годами работала над управляемыми компьютером транспортными средствами. В 1989 г. они запустили ALVINN – первый беспилотный фургон [104]. Это был поистине удачный период. Оказалось, что основатель Google Ларри Пейдж заинтересован в цифровом картировании. Он установил кучу камер на грузовике и проехал по Маунтин-Вью в Калифорнии, снимая окружающий ландшафт и параллельно пересчитывая изображения в базу данных карты. Впоследствии Google реализовал проект под названием Google Street View. Идеи Пейджа отлично сочетались с технологиями, не так давно разработанными уже упомянутым Себастианом Траном, профессором Университета Карнеги – Меллона, задействованным в команде DARPA Challenge. Вместе со студентами он разработал программу, соединяющую фотографии в карты, затем перешел в Стэнфорд. Google купил эту технологию и на ее основе создал Google Street View.

В это время развивалось и графическое аппаратное обеспечение. Видео и трехмерная графика занимают огромное количество памяти. Согласно закону Мура, количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждый второй год, умножая таким образом производительность процессоров и понижая стоимость компьютерной памяти. В 2005 г. компьютерная память значительно подешевела и стала настолько доступной, что можно было создать трехмерную карту целого города и хранить ее буквально на борту машины. Дешевая память в корне поменяла ситуацию.

Тран вместе с некоторыми другими успешными разработчиками беспилотных автомобилей поняли, что реплицировать процессы человеческого восприятия и принятия решений чертовски сложно и невозможно на данном этапе. И потому они решили оставить этот путь. Когда говорят о такого рода инновациях, обычно вспоминают братьев Райт. До них люди думали, что для того, чтобы заставить машину летать, нужно повторять движения птиц. Братья Райт осознали, что для полета не нужно махать крыльями – достаточно парить.

Разработчики беспилотных транспортных средств поняли, что можно сделать машину без разума – уметь передвигаться по сетке-карте будет достаточно. В итоге у них получилась невероятно сложная машина с удаленным управлением, которой не нужно быть разумной или знать правила дорожного движения. Вместо этого используются статистические оценки и неоправданная эффективность данных. Это – уловка, невероятно сложная, классная, она работает в разных ситуациях, но все же это уловка. Она напомнила мне о видеоиграх. Вместо того чтобы создавать машину, способную передвигаться в мире подобно человеку, разработчики придумали превратить мир в видеоигру, в которой машина сможет передвигаться.

Статистический подход превращает все в данные и проводит оценку вероятности. Объекты реального мира трансформируются в геометрические формы, с определенной скоростью движущиеся в определенном направлении по сетке. Компьютер оценивает вероятность того, что объект продолжит движение по траектории, и прогнозирует момент пересечения с собственной траекторией. Машина останавливается или замедляется в случае, если траектории пересекаются. Превосходное решение, в результате которого получаются приблизительно корректные результаты, но на основе ошибочных предпосылок.

Очевидна разница с тем, как работает мозг. Вот цитата из журнала Atlantic за 2017 г.: «Сегодня наш мозг ежесекундно получает до 11 млн единиц информации; и, поскольку мы можем обработать лишь 40 % этого объема, остальное находится в вотчине бессознательного, которое при помощи предубеждений, стереотипов и шаблонов фильтрует шум» [105].

Как вы относитесь к тому, что автономность машин зависит от наших собственных представлений о сущности ИИ? Много людей, подобно Минскому и другим, хотят верить в то, что компьютер способен мыслить. «Этой мечте об ИИ уже больше 60 лет, – сказал Деннис Мортенсен, основатель и исполнительный директор CEO, в апреле 2016 г. журналисту из Slate. – Каждый раз мы думали, что в итоге получится некая сущность, подобная человеку, с которой можно было бы беседовать, как сейчас [беседуем] мы с вами. Однако это пока остается лишь фантазией. Сомневаюсь, что она станет явью на моем веку или на веку моих детей» [106].

Мортенсен сказал, что пока возможен лишь «узкоспециализированный ИИ, способный выполнять – на достойном уровне – лишь одну задачу».

Это, конечно, здорово, но вождение – далеко не одна задача, но процесс параллельного выполнения нескольких задач. Подход к разработке беспилотных машин на основе машинного обучения хорошо справляется с типовыми задачами в рамках одной символьной системы. Не очень забавно управлять двухтонной машиной-убийцей на улицах города, кишащего исключительно малопредсказуемыми толпами людей.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация