Книга Магия чисел. Математическая мысль от Пифагора до наших дней, страница 10. Автор книги Эрик Темпл Белл

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Магия чисел. Математическая мысль от Пифагора до наших дней»

Cтраница 10

Мы не затрагиваем вопрос, по какой причине математики отдают предпочтение той или иной системе постулатов в различных случаях, что легко себе представить, или почему они используют один метод рассуждений вместо другого. Так уж исторически сложилось, что геометры из глубочайшей древности перешли к определенным продуктивным методам размышлений, подсказанным им их практическим опытом. Прежде чем они осознали, что делают, они уже размышляли дедуктивно. Их умозаключения всегда оказывались последовательными.

Исходя из этого отдельные философы-математики вывели наивеличайшее и нисколько не логичное утверждение: логика есть необходимость, неминуемая судьба, навязанная человеческому разуму из ниоткуда. Логика не была изобретением человека, а только лишенным временной привязки даром человечеству от бессмертных богов. В той или иной форме эта вера просуществовала ни много ни мало более двух тысяч лет. Сомнения в ее полезности появились только совсем недавно.

Дальнейшие взаимозачеты могут слишком усилить претензии одной школы философии по указанным базовым вопросам за счет ее конкурентов. Действительно ли Фалес (или любой другой человек) изобрел дедуктивный метод, или он просто наткнулся на него? Такой же вопрос мы поднимали в отношении чисел: кто-то изобрел числа или их просто нашли? Нет необходимости повторять дедуктивные рассуждения, которые уже прозвучали о числах. Каждый вправе выбрать ответ, который ему по нраву. Великие умы не приходили к согласию. Что касается нас, нам хватит и того, чтобы продолжить узнавать, как возникло это непримиримое разногласие во мнениях.

Что станет с египетскими и вавилонскими изысканиями в области чисел и всего остального в рамках суженной математической концепции, описанной выше? Поскольку ни те ни другие никогда ничего не доказывали (насколько это известно на настоящий момент), их вклад не имел ничего общего с математикой. Никого не заставляют принять столь сбивающий с толку и столь оскорбительный вывод, да мало кто и примет его. В обыкновенных исторических записках, возможно, нет ни необходимости, ни смысла проводить четкую границу между тем, что следует именовать математикой, и тем, что не заслуживает носить этот громкий титул. Настоятельное требование доказательств как критерий – это современный подход. Если пользоваться только им, то придется отвергнуть слишком многое из того, что наши предки именовали математикой, и сильно посягнуть на наши собственные достижения.

Компромиссом было бы признать все, что большинством компетентных математиков конкретной эпохи было принято как доказанное, не важно, выдержало ли это критику позднейших поколений математиков или было признано ошибочным или неполным. Но тогда потребовался бы тест на признание, что есть по сути доказательство. Те, кто пытался подтвердить свои выводы, могут считаться математиками, а остальные – эмпирики.

Разграничение достаточно известно редакторам математической периодики, которым положено решать, является ли представленная им на публикацию работа математической или какой-либо еще. Воспользуемся примером из арифметики. Прилежный расчетчик осознает после сорока лет нещадных трудов, что 8 и 9 – единственные числа меньше миллиарда миллиардов, отличные друг от друга только на 1, для которых характерно следующее: оба числа являются точными степенями, основания и показатели которых также отличаются на единицу (8 = 23, 9 = 32). Истрепав несколько калькуляторов и немного собственной нервной системы, потенциальный математик считает дело законченным и принимает решение обнародовать свое исследование. Итак, он пишет редактору любимого математического журнала о своей гипотезе: «Единственными точными степенями, отличными на 1, являются 8 и 9». – «Возможно, вы правы, – отвечает редактор, – но как вы это докажете? С надеждой на известие от вас в ближайшем будущем возвращаю вам вашу рукопись». С тех пор все ждет ответа.

Глава 6
Мудрость как профессия

На примере жизни Фалеса хорошо видны признаки нового праздного класса и зарождение новейшего культа профессионально мудрого человека. Как-то слабо верится, что, если бы философы и математики Древней Греции не были освобождены от физического труда, они способны были бы внести серьезный вклад как в философию, так и в математику.

Незаурядный человек, не выполняющий никаких обязанностей, которые в сознании обычного человека именуются работой, не был редкостью в VI веке до н. э. Действительно, задолго до этого несколько тысяч подобных людей одновременно проживали только в одном Египте. Эти облагодетельствованные смертные толпились как трутни, около замков и стола короля, добывая себе пропитание передачей указаний богов королю и простолюдинам.

Фалес и его последователи по профессии не притворялись, будто дают обществу что-либо стоящее, как поступают священники. Мудрецы новой формации крепко стояли на своих ногах, не опираясь на богов, и едва ли позволяли себе расточительность тратить хотя бы мысль на рабов, обеспечивавших им пищу телесную. Некоторые из этих несгибаемых мыслителей были сами хорошо обеспечены, другие же находились на содержании у богатых покровителей.

Наиболее заметным аспектом такого альянса между материальным благополучием и чистой мыслью являлось отсутствие мотива обогащения. Священники обещали королям награды на небесах, а некоторые даже намекали, будто и рабы получат щедрое вознаграждение после своей смерти. Мыслители никому ничего не обещали. Возможно, они отличались излишней честностью, чтобы брать на себя обязательства, которые не в состоянии выполнить. И они никогда не помышляли, что спустя века после окончания их земного пути их бесполезный труд вдруг поможет освободить рабов от тяжелой работы, а королей – от раболепного идолопоклонничества.

Будучи первым, кто увидел проблеск сегодняшнего восприятия математики, Фалес оказался первым мирянином, превратившим мудрость в профессию. Когда его почитатели вопрошали, как им следует обращаться к нему, он выбрал титул «sophos» (мудрейший). А он был мудр, иногда на самом деле слишком мудр, и все на благо своих соседей. Он не являлся идеальным образцом профессионального мудреца для тех, кто очень скоро пришел ему на смену, поскольку зарабатывал на жизнь тем, что в те дни считалось честной работой.

Будучи греком по отцу, Фалес родился в городе Милет в Ионии в VII веке до н. э. Год его рождения – 640 или 624, последний наиболее вероятен, и в 548 году до н. э. он был еще жив. Отца его звали Экзамий, а мать – Клеобулина. Вот и все, что о них известно, не считая легенды, что Клеобулина имела финикийские корни. Возможно, какие-то факты и подтверждали это, но имя Клеобулина, как принято считать, вполне греческое. Одна или две капли финикийской крови в жилах оказали сильное влияние на карьеру Фалеса. Поскольку существовало древнее предание, до сих пор сохранившееся среди тех, кто не очень-то жалует греков, согласно которому финикияне, лучшие торговцы в истории, научили греков торговать чем ни попадя: от фальшивых монет до троянских коней. Одна из лучших проделок Фалеса в этой области могла бы быть перенесена без изменений из ХХ века.

Среди прочих занятий Фалес оказался и предпринимателем. Предвидя в одну из весен небывалый урожай олив в Милете и на Хиосе, Фалес скрытно и, как бы сейчас сказали, со спекулятивными целями скупил все масляные прессы. Когда к концу лета оливы начали созревать и падать, фермеры вынуждены были платить Фалесу любую названную им цену, которая, кстати, не была чрезмерной, за аренду и использование прессов. Урожай был спасен. Таким образом, вполне допустимо, Фалес финансировал свое затянувшееся образование в храмах и на рыночных площадях Египта и Вавилонии. Жители Милета и Хиоса также кое-чему научились в результате сделки. Фалес не возвращался в ту часть света долгие годы.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация