В чрезвычайно искусном доказательстве Евклида есть намек на коварные логические трудности, на которые реально прольется свет уже только в ХХ столетии. Особенно это касается метода доказательства от противного и значения «вещественности» в математике. Прежде чем описывать суть, следует вспомнить две детали традиционного дедуктивного умозаключения. Позже мы еще раз столкнемся с этим в связи с диалектикой Платона.
Если мы надеемся доказать, что некое утверждение S истинно и нет никакого иного способа доказать это, мы допускаем, что S, напротив, ложно. Тогда, если из этого допущения мы можем вывести противоречие, по классической логике немедленно следует вывод, что S истинно. Это и есть метод доказательства «от противного», знакомое reductio ad absurdum, или сведение к абсурду, из курса школьной геометрии. Впервые Евклид использовал метод от противного при доказательстве, что, если два угла треугольника равны между собой, противоположные этим углам стороны тоже равны. Он также прибегнул к этому методу при доказательстве, что последовательность простых чисел является бесконечной.
Другой метод классической логики также нашел частое применение в математических рассуждениях. Вместо допущения, как в методе от противного, что утверждение S, которое мы надеемся доказать, ложно, мы предполагаем, что оно истинно. Затем мы выводим следствия из этого предположения. Если известно, что одно из них является истинным, и если шаги, которые вели к этому, логически обратимы, мы можем вывести по всем правилам классической логики, что утверждение S истинно. Но если шаги необратимы, мы не можем вывести правомерность утверждения S, и действительно утверждение S оказывается ложным. В спешке или по невнимательности необходимая обратимость шагов иногда упускается из виду. Подобный метод получил название «анализа», хотя слово это имеет другое важное значение (ненужное для нашей цели) в современной математике. Некоторые историки приписывают изобретение этого метода Платону, который конечно же оценил его возможности и в философском и в математическом рассуждении, даже если он и не являлся ни первооткрывателем этого метода, ни тем, кто первым отстаивал его использование в геометрии.
Метод доказательства от противного и аналитический метод вместе составляют главную тактику, по крайней мере более ранних стадий платоновской «диалектики» – категоричное слово для краткого определения метода рассуждения, но значение которого дает не слишком туманное понимание конкретного метода достижения истины. В диалектике все ложное счищается, как скорлупа ореха, и отбрасывается прочь, пока не останется ничего или только ядро неоспоримо очевидных утверждений. Однако в который раз природа обнаруженных истин зависит от тех постулатов, на которых базируется логика. Ученый легко может предоставить универсальную вескость постулатов и подобным же образом доказать непогрешимость логики. Как результат – система истин, приемлемых для тех, кто сходится во мнении, что и постулаты и логика бесспорны. В частности, если система должна удовлетворить рациональное мышление, логика не имеет права строить выкладки, не соответствующие постулатам, на которых она базируется. Именно в этом пункте современные математики нашли необходимым проявить осторожность. Утверждение относительно конечного множества предметов или явлений может быть доказано или опровергнуто опытным путем, или поочередно для каждого элемента множества, или, если множество слишком многочисленно, созданием четко определенного правила, посредством которого такое испытание могло бы быть осуществлено в конечный отрезок времени. Если «предметы» являются суждениями и требуется установить правдивость их всех, классическая логика разрешает утверждать, что каждое из них определенно «истинно» или «ложно», и испытание должно сводиться к решению, что есть что. И снова каждый элемент конечного множества имеет легко распознаваемую индивидуальность, благодаря которой может быть отличим от остальных: он именно такой, а не иной. Мы по-прежнему остаемся в пределах области здравого смысла, и пока никто не внес серьезных возражений против математического рассуждения относительно конечного множества, основанного на этих допущениях традиционной логики. Но с бесконечным множеством или бесконечной совокупностью у рационального мышления возникает повод для сомнений.
Возьмем, например, арифметическое утверждение, в котором каждое натуральное число является или четным, или нечетным. Поскольку множество всех натуральных чисел бесконечно, невозможно проверить каждое из них (поделив на 2 и отметив, является ли остаток 0 или 1), чтобы установить, какое оно. Аналогично для простых чисел: мы утверждаем, что любое натуральное число является либо простым числом, либо составным, и, если нам дано число из конечного множества чисел, с которыми возможно производить вычисления в пределах человеческих возможностей, мы определим, какое оно. Но если мы не в состоянии генерировать все четные числа или все простые, до какой степени, если таковая известна, мы можем здраво заявлять, будто все натуральные числа являются или четными, или нечетными; или простыми, или составными? И до какой известной степени можно считать, что существует то, что не может быть ни сгенерировано, ни использовано в выполнимых вычислениях? Есть ли у доказательства «вещественности» без определения метода изготовления та же самая логическая надежность, как у доказательства, которое фактически показывает, как произвести «вещественное» нечто?
Такие сомнения не тревожат тех, кто полагает, что числа существуют сами по себе и люди лишь наблюдают и изучают идеальное царство, в котором числа продолжат существовать, когда человеческая раса прекратит загрязнять землю. Подобно правилам классической логики и теорем геометрии, они также «существуют» в запредельной для человечества сфере Вечной жизни.
Другие же, более приземленные, в попытках обнаружить любые присущие ограничения, которым подчинена определенная система дедуктивного умозаключения, достигают следующих неожиданных выводов. В любой дедуктивной системе, достаточно инклюзивной, чтобы принимать арифметику натуральных чисел, «неразрешимые» утверждения могут быть построены. Утверждение считается «неразрешимым» в отдельно взятой специфической системе, если ни его правдивость, ни его ошибочность не может быть доказана любым способом в пределах этой системы. Существование неразрешимых утверждений обосновывается их демонстрацией и доказательством, что они являются неразрешимыми. Это не вопрос неспособности доказать или опровергнуть некоторые утверждения из-за элементарного недостатка мастерства. Никто и никогда не сможет доказать или опровергнуть неразрешимое утверждение.
Этот конечный вид достоверности возникает из метода дедуктивного умозаключения, существовавшего приблизительно двадцать три столетия от Платона и Аристотеля к Гёделю, который первый выдвинул (1931) неразрешимое утверждение. Философы Античности и их традиционные последователи Средневековья, похоже, стремились ко всемогущей логике, которая в конечном счете разрешает любую проблему либо положительно, либо отрицательно. Математические логики ХХ столетия показали, что по крайней мере в математике цели древних недосягаемы. Но усилия всех математиков и логиков от Фалеса до ХХ столетия по достижению недосягаемого ни в коем случае не являлись пустой тратой времени и мысли. Возникнув из признания Фалесом, что дедуктивное умозаключение одновременно возможно и полезно, и продолжившись в успешных попытках греческих математиков (от Пифагора до Платона) дать последовательный счет как рациональных, так и иррациональных «величин», поиск универсальной достоверности многое выявил из того, что представляет непреходящий интерес для философии не меньше, чем для математики. Столетия позже часть всего, что было открыто во времена культивирования познания ради самого познания, оказалось непреложным и необходимым одиноким труженикам на заре новой эры науки. Можно привести классический пример. Кеплер, возможно, никогда не определил бы орбиты планет как эллипсы (с Солнцем в едином центре), если бы ему была недоступна греческая геометрия конических сечений. Не имея в качестве ориентира законов Кеплера, описывающих планетарные орбиты, Ньютон никогда не предложил бы миру свой закон всемирного тяготения; а без закона всемирного тяготения Ньютона развитие астрономии, физики и современной технологии шло бы совсем не так, как последние два с половиной столетия.