Книга Магия чисел. Математическая мысль от Пифагора до наших дней, страница 80. Автор книги Эрик Темпл Белл

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Магия чисел. Математическая мысль от Пифагора до наших дней»

Cтраница 80

С этого момента утрата веры в вечные истины и абсолюты перекинулась, но не сразу, а исподволь, на логику и метафизику, а от них и на весь авторитаризм. Хвастливое высказывание Хенли наконец-то приобрело значимость: «Я хозяин своей судьбы, я капитан своей души». И фраза «вечный дух свободного ума» приобрела значение. Мозг человека стал свободен, как он того хотел, а человечество теперь получило возможность отбросить бирюльки и стать теми, кем должно быть.

Вероятно, те, кто убрал от греха подальше «Евклида» Саккери, предвидели, что случится со всеми абсолютами, если работа будет напечатана, и испытывали благоговейный страх перед преждевременным претворением в жизнь неизбежного. Другие совершили аналогичную ошибку в отношении революции Коперника. Вместо того чтобы вставать второй раз на грабли, невнимательный инквизитор, ответственный за утрату работы Саккери, должен был реабилитировать своих предшественников, отважно заявив о надвигающейся революции, более подрывной, чем в случае с Коперником. Он мог бы даже наградить Саккери, своего подчиненного, вполне заслуженным титулом Коперника мысли.

Жизнь человека, который в конце концов представил миру неевклидову геометрию, – это еще одна история успеха в относительно маловажных вещах, завершившаяся личным разочарованием в своих амбициях. Будучи хорошо осведомленным об огромной значимости своего свершения, Лобачевский умер практически не узнанный теми, кто мог по достоинству оценить его труды, и лишенный милости мелких чиновников, которым он вынужден был подчиняться.

Нет нужды перечислять здесь всех, кто пытался опровергнуть постулат Евклида о параллельных прямых на основе его же предположений. Астроном Птолемей в I веке до н. э. оказался одним из первых, но даже у него были предшественники. В IX–XIII веках за ним последовали несколько мусульманских геометров, и среди них персидский математик и поэт Омар Хайям, но они не сумели продвинуться дальше Птолемея. Омар Хайям шел тем же путем, что и Саккери. Но не сильно продвинулся. Мусульман сменили итальянские геометры XVI и XVII веков, которые тоже пришли к неутешительному выводу. Кое-кто, включая известного английского математика Джона Уоллеса (1616–1703), который сделал это в 1693 году, заменяли пятый постулат Евклида другим эквивалентным предположением. Через сорок лет после попытки Уоллеса Саккери застрял в том же тупике, в котором исчезали все его предшественники, хотя он двигался с несравнимо большей осторожностью, чем они. Но он тоже верил, что предположение Евклида верно. В поисках истины Саккери, как и все остальные, кто занимался этим ранее, проявил недостаток смелости или воображения, чтобы выполнить поворот кругом и просто сойти с тропы, ведущей в никуда. Чтобы заподозрить, что требуемое доказательство постулата Евклида о параллельных прямых невозможно, надо было иметь такую смелость и такое воображение, какие нашлись у Коперника, когда тот сместил нашу планету из центра Солнечной системы. Саккери не хватило обыкновенной решимости обосновать свое подозрение, создав самостоятельную геометрию, отвергающую постулат Евклида.

У Лобачевского (1793–1856) хватило требуемых сил. И его молодому коллеге, венгерскому кавалерийскому офицеру и геометру Яношу Больяи (1802–1860), обладавшему необходимой решимостью и воображением.

Незнакомые друг с другом, Лобачевский и Больяи шли к одной цели конвергентными дорогами и достигли ее практически одновременно. У русского было преимущество в публикации. Еще несколько человек преуспели в создании последовательной геометрии, отличной от евклидовой. Но в дополнение к решимости, воображению и таланту потребовался четвертый компонент – отвага. Если человек, создавший или заявивший о создании новой революционной геометрии, не обладает запасом жизненных сил и стойкостью, чтобы встать на защиту своей работы от мудрецов и дураков, он никогда ничего и не создал бы под влиянием самых разных обстоятельств или авторитетов. Из страха перед «криками тупиц» Гаусс, добившийся результатов наравне с остальными, спрятал их до поры до времени и так и не обнародовал. Лобачевский и Больяи сделали все от них зависящее для предания гласности своим работам. Поскольку работа Лобачевского попала в печать первой, его следует называть единственным первооткрывателем, не забывая про заслуги Больяи.

Лобачевский шел к победе тернистым путем. В возрасте семи лет он потерял отца, служившего мелким государственным чиновником в России, который оставил вдове двоих сыновей и мало чего еще. Мать смогла выучить детей, и в 1897 году будущий математик поступил в Казанский университет. Следующие сорок лет своей жизни от студента до профессора математики, а в конце – и ректора Лобачевский провел в стенах университета, получил несколько ученых степеней. Сорок лет выдающегося служения науке и развитию образования в России завершились ничем. Без объяснения причин Лобачевский был отстранен от должности в возрасте сорока четырех лет. Хотя его коллеги единодушно протестовали против того, что они называли грубым бюрократическим нарушением закона, правительство стояло на своем и отказалось представить объяснения.

Лобачевский прожил еще девять лет и умер в 1856 году, так и не получив признания за свое творческое научное бунтарство. Первое сообщение о неевклидовой геометрии Лобачевского было представлено научному обществу Казанского университета в 1826 году. Его не приняли, но за 1829–1830 годы солидное описание было переписано заново и опубликовано по-русски. Немецкий перевод последовал в 1840 году. Ни та ни другая редакции не произвели сколь-нибудь заметного впечатления на математическое сообщество. Только один математик (Гаусс) почтил должным вниманием геометрию Лобачевского и высоко оценил ее в частной переписке, но это было все. Не лишенный мужества, Лобачевский продолжал совершенствовать свою неевклидову систему, назвав ее пангеометрией. За год до его смерти (1855) Казанский университет отмечал полувековую годовщину. Оказав университету незаслуженную честь, Лобачевский пришел на церемонию и подарил экземпляр своей «Пангеометрии», подводившей итоги всей его научной жизни. Работа была написана по-французски и по-русски, но не им самим, поскольку он к тому времени уже ослеп. Спустя несколько месяцев, в возрасте шестидесяти двух лет, умер, вероятно, на то время единственный в мире человек, кто точно знал значение совершенного им. Лобачевский осознавал, какое воздействие новая геометрия окажет на дедуктивные рассуждения. Последнее крайне важно для данной работы.

Источником полного успеха Лобачевского стала его способность не верить в кажущиеся прописными истины и его способность применить свое неверие. Этот талант к созидательным сомнениям в традиционно очевидном, похоже, является редчайшим из всех интеллектуальных даров. Тот, кому достался этот талант и кто при этом способен воспользоваться своим талантом, обычно совершает переворот в науке.

Когда Эйнштейна спросили, как ему удалось создать теорию относительности, он ответил: «Я засомневался в аксиомах». Лобачевский засомневался в аксиоме Евклида о параллельных прямых, Коперник засомневался в аксиоме, утверждавшей, что Земля – центр Солнечной системы, Галилей поставил под сомнение аксиому, что более тяжелое тело падает быстрее, Эйнштейн озадачился аксиомой, что события в разных местах происходят одновременно, Брауер засомневался в аксиоме, что закон логики Аристотеля об исключении среднего является универсальным в применении, физики-атомщики XX века подвергли сомнению более чем одну аксиому механики Ньютона и т. д. и т. п. В каждом случае какой-то раздел человеческого знания подвергался изменениям, и практически без вариантов – в сторону большей свободы. Аксиома в целом накладывает определенные ограничения на разумные рассуждения или запреты на возможные действия, отмена аксиомы как необходимости открывает дорогу свободному творчеству. В прошлом игнорирование аксиом приводило к преследованию, сегодня во всех отраслях знания, кроме социальных наук, она просто предлагает самоограничение, а то и меньше. Успех в применении нового знания или новых преимуществ, ставший следствием успешной замены некоторых изживших себя аксиом, традиционно выступает пропуском к уважению до тех пор, пока заново объявленная свобода сама не превратится в тиранию, ее сменят и откроют дорогу другой. Сухой остаток на стороне человеческой свободы, а не на стороне унаследованных абсолютов и навязанных традиций.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация