Книга Магия чисел. Математическая мысль от Пифагора до наших дней, страница 81. Автор книги Эрик Темпл Белл

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Магия чисел. Математическая мысль от Пифагора до наших дней»

Cтраница 81

Успех Лобачевского, оспаривавшего аксиомы, был подхвачен другими. Нельзя утверждать, что его пример ускорил чей-то успех, следовавший за ним, поскольку его работа пребывала в полном забвении почти тридцать лет. В 1840-х годах, например, Уильям Роуен Гамильтон заменил одну из базовых аксиом классической алгебры. Аксиома «Порядок, в котором два числа умножаются друг на друга, не оказывает влияния на результат» необходима для классической алгебры. В алгебре, развитой Гамильтоном применительно к физическим наукам, эта аксиома была опущена. Казалось странным, что Гамильтон, живший почти тридцать лет спустя после Лобачевского, опубликовал свою работу и даже умер, не ведая о существовании неевклидовой геометрии. Но в свете личного успеха Гамильтона этот пример наглядно демонстрирует, что математики-созидатели как класс наконец-то начали осознавать неотъемлемую свободу собственных усилий. Когда же в итоге глубинное значение трудов Лобачевского и Гамильтона было оценено, замена аксиом в математике стала одним из общедоступных методов совершения прорывов. Свободные открытия расцвели без ограничений, не сдерживаемые традицией, и математика вступила в период беспрецедентной экспансии. Ближе к концу XIX века Георг Кантор смог выразить убежденность большинства математиков-созидателей в афоризме, ныне ставшем знаменитым: «Суть математики в ее свободе».

Согласен, сказал бы реалист, последователь Платона. Но что такое свобода математики? Разве все эти странные геометрии и причудливые алгебры не находились уже в вечном существовании прежде, чем математики «открыли» или «увидели» их? Разве они не были известны смертным потому, что математики были слепы к окружающему миру? Против столь упорного желания поверить в недоказуемое и никогда недостижимое, не сказать бесполезное, рациональный скептицизм бессилен, а здравый смысл будет напрасно стараться. Пусть верят, если хотят, скажет натуралист.

Те, кто устойчив в своей вере, что «математическая реальность лежит вне нас», имеют хотя бы один неоспоримый аргумент в свою защиту. Открытие может быть свободным, отмечают они, но свободным только в рамках закона. Этим законом является логика, какой она развивается в математике со времен Фалеса. Но как уже было показано, этот предположительно жесткий закон сам без конца меняется. Это не проблема для непоколебимого реалиста: изменение само испытывает действие более высокого закона, который, в свою очередь, подпадает под действие еще более высокого закона, и так далее, вплоть до того недосягаемого, который и является Абсолютом.

Свобода, которой, как представлял Лобачевский, он обладал, создавая свою геометрию, была иллюзией. Это Абсолют диктовал каждый шаг геометру. «Суть математики» не в свободе, как утверждал Кантор, а в служении деспотизму, навеки недосягаемому для человечества. Опять же, пусть верят те, кто хочет верить.

Глава 26
Меняя взгляды

Не многие философы сумели противостоять искушению применить собственную философию, иногда с пагубными результатами, к основам математики. Простейшая арифметика и начала геометрии казались большинству метафизиков предметами первой необходимости для любых логически последовательных явлений физической материи. Поэтому, если некая явно сложная система знаний не в состоянии объяснить видимую неизбежность чисел и простейших геометрических теорем, она остается малоубедительной.

Амбициозные в разумных пределах метафизики попытались каким-то образом дать рационалистическое толкование таким постоянным головоломкам, как «пространство» и «время». В противном случае физическое естествознание осталось бы без философских оснований. Если бы в дополнение к этому удалось «пространство» и «время» привязать к общепринятым геометрии, арифметике и физике конкретной эпохи, то соответствующая метафизика усложнила бы почти все вокруг. Когда «законы мысли» (классическая триада Аристотеля: тождество, исключенный третий и противоречие) были также включены во всевышний синтез, метафизика для всей философии, за исключением двух принципиальных деталей, стала завершенной. Теория этики, морали, полезности и аргумент в пользу существования Бога должны были быть представлены в системе.

Всего этого достиг Иммануил Кант, живший в 1724–1804 годах. Если отдельные части его колоссальной системы не производят должного впечатления на математиков и естествоиспытателей нашего времени, в отличие от их предшественников XVIII и XIX веков, то только потому, что как естествознание, так и математика стали в наше время более динамичными, чем они были в 1781 году, когда Кант опубликовал свою «Критику чистого разума». Какая бы дата ни была на календаре, ни естествознание, ни математика сегодня не являются всецело такими, какими были вчера. Да и сам Кант, без сомнения, частично признал данный трюизм как решающий фактор в постепенном устаревании универсальной философии, когда заявил, что ничто не являлось более разрушительным для философии, чем математика. Поскольку философия Канта долгое время была самой долговечной из математических философий со времен Платона и продержалась еще и в XIX веке, следует описать ее в нескольких штрихах в качестве нашей дани уважения великому философу прошлого.

Прежде чем рассматривать наиболее существенный вклад Канта в критику естествознания и математики, следует обратить внимание на личность и карьеру этого величайшего из современных философов. Если не принимать во внимание такой терпимый недостаток, что он всегда был чисто выбрит на протяжении шестидесяти лет, хотя мог бы отрастить бороду, Кант остается безупречным музейным образцом популярного идеала профессионального философа. Его называли педантом, но едва ли справедливо: педанты никогда, даже случайно ничего не создают. Все, что он имел, ушло в мысли. В противовес словам Декарта «Я думаю, значит, я существую» Кант мог бы заявить: «Я существую, значит, я думаю». Наделенный, как Декарт, с юности слабым здоровьем, Кант еще в молодые годы усвоил необходимость трепетно относиться к своему телу, и когда он возмужал, то начал в высшей степени хорошо следить за своим здоровьем и дожил до восьмидесяти лет. То ли от отсутствия инициативности и склонности, то ли потому, что презирал пустую трату времени, но он не был связан ни с одной женщиной, после того как вырвался от чрезмерно благочестивой и в определенной степени деспотичной матери. Как он отдыхал, если вообще отдыхал, в то время когда мыслил, осталось неизвестным. Ближе к старости он погрузился в прорицательство и не испытывал отвращения к знакам публичного уважения со стороны общества. Он наслаждался редкостным удовольствием быть легендой при жизни. Если стойкая приверженность единственной цели заключается в прижизненном людском восхищении, то Кант оказался одним из самых восхитительных смертных, которые когда-либо жили на земле. Его целью было создание философии, которая переживет его, и цель была достигнута. Складывается единое мнение, что его успех был настолько же скучным, насколько таковым был и он как личность. Хотя Кант много философствовал об эстетике, он тем не менее не имел ни художественного, ни артистического вкуса. Что касается бытовых деталей, они практически соответствовали жизни малооплачиваемого профессора философии во второразрядном колледже или университете наших дней. Все, что имел величайший философ со времен Платона, – так это свое величие.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация