Книга Лекции о Солнце, страница 21. Автор книги Сергей Язев

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Лекции о Солнце»

Cтраница 21

Но какова же температура этого грандиозного источника энергии? Как установить соотношение между температурой излучателя и количеством излучаемой им энергии? Джон Гершель рассчитал, что «концентрация» излучаемой Солнцем энергии вблизи самого светила должна быть в 92 тысячи раз больше, чем у поверхности Земли. Должно ли это означать, что фотосфера должна быть в такое же количество раз жарче, чем тело, нагреваемое солнечными лучами на Земле?

Ученые, которые так считали, получали немыслимо высокие значения температуры фотосферы. Так, например, оценки шотландского исследователя Джона Ватерстона (1811–1883) давали более 7 миллионов градусов. Патер и знаменитый итальянский астроном Анжело Секки (1818–1878) в 1861 году определил температуру поверхности Солнца в 10 миллионов градусов. Эти оценки казались (и впоследствии оказались) фантастически завышенными.

Пьер Луи Дюлонг (1785–1838) и Алексис Терез Пти (1791–1820) еще в 1817 году выполнили ряд опытов, из которых следовало, что интенсивность излучения непропорциональна температуре излучателя! Это было правильное заключение, но конкретная зависимость, предложенная этими исследователями, оказалась также неверной. Дюлонг и Пти считали, что при росте температуры излучателя в арифметической прогрессии мощность излучения растет в прогрессии геометрической. В результате оценки температуры Солнца получились в тысячу раз меньше, чем у их предшественников: от 1461 до 1761 градуса (Пулье), или же 3000 градусов (французский физик Жюль Габриэль Виолль, 1841–1923).

Расхождения в оценках были слишком велики, доверять им было сложно. Премия, обещанная в 1876 году Парижской академией наук за лучшую работу по определению температуры Солнца, также мало что дала: премию получил упомянутый выше Виолль, но, как мы теперь знаем, он вдвое занизил температуру поверхности Солнца. Физические модели, применявшиеся при расчетах, были далеки от адекватных.

Ответ был, наконец, получен австрийским физиком Йозефом Стефаном (1835–1893) в 1879 году. Он экспериментально установил, что энергия, излучаемая нагретым телом, оказалась пропорциональной четвертой степени температуры! Это означало, что высокая мощность солнечного излучения вовсе не требует температуры в миллионы градусов. Еще один выдающийся австрийский физик Людвиг Больцман (1844–1906) в 1884 году вывел теоретически эту закономерность, получившую название закона Стефана – Больцмана.

Новые измерения потока солнечной энергии, падающего на Землю, и вычисления температуры поверхности Солнца на основе закона Стефана – Больцмана дали на рубеже XIX–XX веков значения, близкие к подтвержденным позднее другими методами – около 6000 градусов.

Независимый метод был также связан с изучением спектра Солнца. Если измерить, какое количество солнечной энергии приходит на Землю в разных диапазонах длин волн (например, определяя, сколько тепла приходит от Солнца, проникая сквозь красный, желтый и зеленый фильтры), выявляется еще одна любопытная закономерность: больше всего энергии попадает на Землю в диапазоне длин волн, соответствующих желтому цвету! Конечно, в потоке света от Солнца присутствуют и красные, и синие лучи, но больше всего желтых. Потому-то Солнце и кажется нам желтоватым. Потому-то все живые организмы на поверхности Земли, использующие солнечный свет для обеспечения своего существования, ориентируются на этот диапазон длин волн.

В 1893 году немецкий физик Вильгельм Вин (1864–1928) теоретически показал, что длина волны, на которую приходится максимум излучения в спектре, должна быть обратно пропорциональной температуре излучателя! Это означает, что при росте температуры излучателя максимум распределения энергии в спектре смещается в сторону коротких волн. Эта природная закономерность была названа законом смещения Вина. Но это означало, что по положению максимума распределения энергии в спектре Солнца можно вычислить температуру его поверхности! Расчеты снова дали величину, близкую к 6000 градусов, что совпадало с результатами на основе актинометрии – измерения общего потока солнечной энергии и применения закона Стефана – Больцмана. Работы Вина были удостоены Нобелевской премии по физике в 1911 году.

Итак, только к началу ХХ века люди узнали, какова же температура сияющей поверхности Солнца – фотосферы. Если учесть, что этому предшествовали тысячелетия догадок, поисков и исследований, это было, по сути, совсем недавно!

Лекция пятая
Солнце, излучающее свет
Мне все открыто в этом мире —
И ночи тень, и солнца свет,
И в торжествующем эфире
Мерцанье ласковых планет.
Николай Гумилев

Солнце, наверное, нужно, чтобы греть и светить.

Саша Копылова, 6 лет
Колуном дрова мы колем,
Выбиваемся из сил.
Зееман магнитным полем
Кучу линий расщепил.
Николай Ланкевич

Воистину, спектры Солнца оказались неисчерпаемыми кладезями информации. Со временем стало ясно, что на форму контуров фраунгоферовых линий оказывает влияние не только относительное число атомов данного типа и не только скорости их движения вдоль луча зрения. Если источник излучения погружен в магнитное поле, контуры линий меняются! И это означает, что спектральный анализ может позволить сделать вывод о напряженности магнитного поля, повлиявшего на спектр…

Открытие было сделано в 1896 году выдающимся нидерландским физиком Питером Зееманом (1865–1943), удостоенным за него только что учрежденной Нобелевской премии по физике 1902 года. Зееман обнаружил, что спектральные линии под воздействием магнитного поля расщепляются. Речь шла о линиях, создаваемых земными источниками света. Эти источники помещались в довольно сильные магнитные поля. При этом линии расщеплялись – превращались в две симметрично расположенные относительно первоначального положения линии. Вместо одной линии в результате возникал так называемый триплет: он обычно состоит из одного несмещаемого компонента и двух симметрично смещенных с каждой стороны. Явление получило название эффект Зеемана.

Несмещаемый компонент принято обозначать греческой буквой π (пи) – от немецкого слова parallel («параллельный»). Π-компонент виден только в том случае, если наблюдения проводятся в направлении, перпендикулярном магнитному полю. Излучение этого компонента поляризовано вдоль поля.

Смещенные компоненты обозначаются греческой буквой σ (сигма) – σ1 и σ2. Наблюдения этих компонентов в перпендикулярном магнитному полю направлении показывают, что σ-компоненты линейно поляризованы, если смотреть в перпендикулярном полю направлении. Отсюда и название (σ – от нем. senkrecht, т. е. «перпендикулярный»).


Лекции о Солнце

Рис. 12. Иллюстрация расщепления магниточувствительной линии поглощения магнитным полем солнечного пятна. Вверху – линии в невозмущенной фотосфере, внизу – линии в солнечном пятне

Вход
Поиск по сайту
Ищем:
Календарь
Навигация