Взглянуть на общее благо под другим углом нам поможет один из видов певчих птиц, живущих большими группами в Израиле, – аравийские болтуны. Эти птички весом около 80 г стали звездами книги “Принцип гандикапа” (The Handicap Principle) Амоца и Авишаг Захави. Супруги Захави изучали их 30 лет и пришли к выводу, что кое-какие элементы поведения этих птиц очень напоминают альтруизм. Некоторые болтуны охраняют группу, издавая предупреждающие сигналы при приближении хищника. Если хищнику все же удается подобраться близко, птицы облепляют его со всех сторон и пытаются прогнать. Они делятся едой с неродственными особями, практикуют коммунальное гнездование и коллективно заботятся о детях – и своих, и чужих, как это принято в кибуцах
[66]. Аравийские болтуны предстают образцом птичьей добродетели, а их альтруизм выглядит не менее ярко, чем хвост павлина.
В чем же здесь дело? Родственный отбор тут ни при чем, ведь птицы помогают не только родственникам. В случае взаимного альтруизма они пытались бы мошенничать: безвозмездно пользоваться общественными благами и при этом не стоять на страже, не драться с хищниками, не делиться едой и не заботиться о птенцах. Болтуны же делают противоположное: они прямо-таки соревнуются в демонстрации альтруизма. По наблюдению Захави, если доминантная птица замечает, что какая-то низкоранговая особь примеряет на себя роль стража, она отгоняет ее и занимает ее место. Кроме того, птицы пытаются запихнуть пищу в горло неродственным согруппникам, даже когда те сыты. Захави предположил, что альтруистические элементы поведения аравийских болтунов – это гандикапы, индикаторы приспособленности. Демонстрация таких гандикапов дает птицам возможность повышать социальный статус и улучшать свои сексуальные перспективы. Позволить себе поступать альтруистично могут только самые приспособленные особи, пребывающие в прекрасном состоянии. Найдя альтруиста, птица приобретет хорошие гены для потомства. По-видимому, альтруизм у аравийских болтунов развивался именно так. Большинству же видов птиц не свойственно демонстрировать приспособленность, творя общественно полезные дела. Однако не исключено, что альтруистичные птицы имеют значительные преимущества и как отдельные особи, и как группа.
Джон Нэш vs бангалорские таксисты
И альтруистичные люди-охотники, и альтруистичные аравийские болтуны появились в результате очень важного эволюционного процесса под названием “выбор равновесия”. Пугающий термин, не правда ли? Глубокое его понимание редко можно встретить даже у тех биологов, которые немного знакомы с теорией игр. Но я считаю, что эта идея помогает прояснить многие вопросы, связанные не только с эволюцией, но и с человеческой культурой.
Чтобы понять идею выбора равновесия, нужно хоть немного узнать о самом равновесии и теории игр. Теория игр – это метод изучения стратегий принятия решений в условиях, когда выигрыш каждого участника зависит не только от его собственных действий, но и от действий других людей. Игра – это любая социальная ситуация, участники которой выбирают стратегию поведения, опираясь на свои предположения о стратегиях других участников. Так поступает каждый участник, и все это напоминает дурную бесконечность: я предполагаю, что вы предполагаете, что я предполагаю, что вы предполагаете… Как теория игр может помочь предсказать человеческое поведение в играх, если они выглядят как безнадежная путаница?
Где-то в 1950-м экономист Джон Нэш разрубил этот гордиев узел, разработав концепцию равновесия (сейчас она известна под названием “равновесие Нэша”). Равновесие – это набор стратегий игроков (по одной на каждого), характеризующийся единственным простым свойством: ни у одного игрока нет мотива менять свою стратегию при условии, что остальные игроки продолжают следовать уже выбранным стратегиям. То есть равновесие как бы поддерживает сохранение всеми участниками своих стратегий и сохраняет таким образом само себя. Идея равновесия образует фундамент современной теории игр, а значит, и современной экономики, военной стратегии и стратегии бизнеса. За свое открытие Нэш вместе с другими учеными в 1994 году удостоился Нобелевской премии по экономике.
Автомобильное движение – хороший пример равновесия. Если все автомобили, как в Британии, едут по левой полосе, нет ни одной рациональной причины выезжать на правую. Бунтари быстро исчезнут из популяции водителей. Но и движение по правой полосе может быть примером равновесия, как на территории некоторых бывших британских колоний в Северной Америке: другим правилам они следуют в знак своей независимости. В игре вождения есть и третий вариант равновесия, когда каждый водитель 50 % времени проводит на левой полосе, а 50 % – на правой. Если так уже поступают все – можете присоединиться. Такое произвольное равновесие, кажется, предпочитают в бывших британских колониях в Южной Азии, а особенно – таксисты Бангалора. Нэш понял, что наиболее реалистичные игры имеют несколько состояний равновесия. Мы не можем в точности предсказать, какое равновесие установится. Однако мы можем предсказать, что игроки будут координировать свое поведение в направлении какого-то из них. В игре вождения разные страны пришли к разным точкам равновесия.
Выбор равновесия – это постепенный процесс, в результате которого в игре устанавливается равновесие. Представьте, что анархическая страна, где автомобили в глаза никто не видел, вдруг начнет их импортировать. Люди поедут по дорогам, не зная, какую полосу выберут остальные. Одни будут все время ездить по левой стороне (британское равновесие), другие – по правой (американское равновесие), а остальные будут ежедневно кидать монетку (бангалорское равновесие). Мы имеем три конкурирующие стратегии, каждая из которых приводит к своему типу равновесия. Предположим, что при каждом лобовом столкновении оба водителя погибают. Если встречаются два водителя, предпочитающие одну и ту же полосу – левую или правую, – оба выживают. Если любитель правой полосы встречает любителя левой – оба погибают. Если приверженец бангалорской стратегии встречает себе подобного, оба погибают в половине случаев. Нет никаких рациональных предпосылок для предсказания равновесия, которое должно установиться. Все равновесия одинаково “рациональны” в том смысле, что в каждом из них все участники действуют наиболее выгодным для себя образом с учетом поведения остальных. Хотя рациональных причин для установления того или иного равновесия нет, роль рефери может сыграть историческая случайность. Можно не сомневаться, что спустя несколько недель победит либо правостороннее равновесие, либо левостороннее. Какое именно – дело случая, но одно непременно одержит верх. (У бангалорского равновесия шансы будут невелики.)
В этом примере проблему выбора равновесия решает не рациональная логика, а историческая случайность. Когда у видов в ходе эволюции устанавливается определенное равновесие в игре ухаживания, в роли исторических случайностей выступают случайности эволюционные. Легко создать компьютерную симуляцию этого процесса, как это сделал, например, Брайан Скирмс. Свою работу он интересно и доступно представил в 1997 году в книге “Эволюция общественного договора” (Evolution of the Social Contract). Процессы выбора равновесий в реальной биологической эволюции должны идти постоянно. Большинство взаимодействий животных можно рассматривать как совокупность стратегий, поэтому их тоже можно моделировать при помощи теории игр. Но в играх, по сложности близких к реальным, вариантов равновесия огромное множество – не три, как в игре вождения, а сотни и тысячи. В реалистичных играх со множеством равновесий процессы выбора равновесия критичны для понимания и предсказания поведения.