В борьбе за звание самого высокого и сухого места в мире Южный полюс не имеет конкурентов. Ледовый купол поднимается над уровнем моря на 2,8 км, а влажность здесь меньше 10 %. Вся вода вморожена в лед, твердый, как гранитное материковое основание. Я надеюсь когда-нибудь попасть туда, но, пожалуй, не бесконечной зимней ночью, когда воет штормовой ветер и температура колеблется около –60 °C. Если вы зимуете на Южном полюсе, то должны быть совершенно уверены в крепости психики – собственной и коллег. Поскольку Дэн Мэррон – радиоастроном, для регистрации миллиметровых волн ему не нужно темное небо, поэтому он приезжает сюда во время антарктического лета, меняя теплую зиму Таксона на температуру чуть ниже нуля, – здесь, у подножия мира, теплее не бывает. Есть что-то поэтическое в том, чтобы отправиться в край бесконечного света, чтобы сделать снимок бесконечной тьмы.
Проект уже принес ряд впечатляющих результатов, хотя система еще даже не вышла на полную мощность. В центр Галактики падает вещество, и эта область должна быть очень яркой – с учетом размера, измеряемого телескопом горизонта событий. Однако она является тусклой – энергия, очевидно, исчезает на горизонте событий, что является сильным аргументом в пользу черной дыры
[311]. Первичные данные говорят о том, что аккреционный диск повернут к нам практически ребром, и это позволяет измерить скорость вращения диска, таким образом определив границы параметров вращения черной дыры. Переменная яркость компактного радиоисточника связана с изменениями потока аккреции – очень близко от черной дыры. Результаты моделирования говорят о том, что система скоро станет весьма чувствительной и поставленные цели будут достигнуты – будет получено первое в истории изображение черной дыры (илл. 51)
[312].
Изображение – если его удастся получить – будет выглядеть как маленький темный кружок, состоящий из ничего. Общая теория относительности утверждает, что тьма должна иметь 80 млн км в поперечнике, что при наблюдении с Земли аналогично размеру макового семечка, находящегося в Нью-Йорке, если смотреть на него из Лос-Анджелеса. Силуэт будет удвоен в размерах в силу гравитационного отклонения света и обрамлен светом окружающих звезд. Если его форма не будет правильным кругом, у нас появится повод усомниться в верности теоремы «об отсутствии волос» у черных дыр
[313]. Если же форма и размер изображения точно совпадут с предсказаниями общей теории относительности, оно на данный момент станет лучшим визуальным подтверждением того, что пространство и время действительно могут сворачиваться в мячик и что четыре миллиона солнц могут исчезнуть почти бесследно.
7. Учимся смотреть глазами гравитации
Грядет революция. Скоро мы сможем «видеть» черные дыры в действии. Четыреста лет астрономы изучали Вселенную исключительно при помощи света и других видов электромагнитного излучения. Они оценивали свойства «материала» Вселенной по его излучению и взаимодействию с излучением. И вот в 2015 г. впервые были зарегистрированы гравитационные волны.
Гравитационные волны – колебания пространственно-временного континуума, перемещающиеся со скоростью света. Это уникальная возможность взглянуть на мощную гравитацию черных дыр, нейтронных и сверхновых звезд, что позволит астрономам проверить общую теорию относительности новым способом. Волны проходят через огромные расстояния и могут служить инструментами исследования Вселенной – какой она была сразу после Большого взрыва. Возможность смотреть глазами гравитации обещает изменить наше понимание черных дыр.
Видеть Вселенную по-новому
Наши взгляды на Вселенную радикально менялись дважды. Первая революция началась в 1610 г., когда Галилей направил новое изобретение – телескоп – в ночное небо. Его лучший телескоп имел объектив диаметром в пару сантиметров и собирал в сто раз больше света, чем глаз человека. Со времен Галилея астрономы существенно усовершенствовали простую подзорную трубу. Сто лет назад они начали использовать зеркала вместо линз для сбора света, поскольку большие линзы деформировались и не фокусировали все цвета в одной точке. Современные астрономы строят телескопы диаметром 10 м, используя одно сплошное зеркало или мозаику из небольших шестиугольных сегментов
[314]. За четыре века с эпохи Галилея собирающая сила телескопов увеличилась в миллион раз.
Между тем усовершенствование способа обнаружения света обеспечило и дополнительную глубину изображения. Глаз человека как химический детектор – несовершенен. Чтобы создать иллюзию непрерывного движения, он должен передавать мозгу поступающую на сетчатку информацию десять раз в секунду. Следовательно, глаз собирает свет – или «интегрирует» – только в течение десятой доли секунды. В середине XIX в. была изобретена фотография, и вскоре астрономы стали использовать ее для получения изображений ночного неба. Свет фиксируется химическим процессом – не более эффективным, чем в случае с человеческим глазом, но длинная выдержка значительно увеличивает глубину. Настоящий прорыв произошел в 1980-х гг., когда существенно усовершенствовали цифровое формирование изображений. Современные приборы с зарядовой связью (ПЗС) с эффективностью 80–90 % преобразуют входящие фотоны в электроны, а их – в электрический сигнал, который легко оцифровывается. ПЗС – почти совершенные детекторы, в 100 000 раз более эффективные, чем глаз человека.
Благодаря сочетанию этих факторов лучшие телескопы по глубине превосходят человеческое зрение в 100 млрд раз. Это значит, что если обитатель Северного полушария видит лишь одну внешнюю галактику – М31, то большой телескоп видит 100 млрд галактик. Следовательно, астрономы могут наблюдать не только звезды, удаленные на несколько сотен световых лет, но и свет, находившийся в пути 13 млрд лет. ПЗС настолько усовершенствовались, что за год большие телескопы регистрируют больше фотонов, чем глаза всех людей в истории человечества.
Вторая революция в видении Вселенной произошла в первой половине XX в. Со времен наших древнейших предков, глядевших в небеса над африканской саванной, астрономы пользовались узким фрагментом электромагнитного спектра. Свет от самого светлого голубого до густейшего красного различается длиной волны или частотой всего в два раза. Самые большие телескопы лишь глубже заглядывают в ту же самую узкую щель в спектре.