Книга Первые три минуты, страница 9. Автор книги Стивен Вайнберг

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Первые три минуты»

Cтраница 9

На картине Вселенной, которую мы здесь рисуем, изображен расширяющийся рой галактик. До сих пор свет для нас играл неприметную роль «звездного вестника», несущего лишь информацию о скорости галактик и расстоянии до них. В ранней же Вселенной все обстояло совершенно по-другому: как мы вскоре увидим, тогда в мироздании львиную долю вещества составлял именно свет, сдобренный ничтожными примесями обычной материи. Поэтому сейчас будет весьма полезным кратко повторить все то, что мы узнали о красном смещении и поведении световых волн в расширяющейся Вселенной.

Рассмотрим световую волну, распространяющуюся от одной типичной галактики к другой. Расстояние между двумя галактиками равно произведению времени прохождения света между ними на его скорость, а увеличение этого пространства – произведению времени прохождения света на относительную скорость галактик. Посчитав относительное увеличение расстояния (разделив его изменение на его же среднюю величину), увидим, что время прохождения света сокращается. Относительное увеличение расстояния между этими двумя галактиками (и между любой парой типичных галактик) за время, пока летел свет, оказывается равным отношению скорости одной галактики относительно другой, деленной на скорость света. Но, как мы помним, попытки вычислить относительное увеличение длины волны света за время его полета приводят к этому же отношению. Таким образом, во время расширения Вселенной длина волны любого луча света возрастает пропорционально расстоянию между типичными галактиками. То есть, расширяясь, Вселенная «растягивает» гребни волны все дальше и дальше друг от друга. Хотя, строго говоря, наше доказательство верно лишь для малых значений времени полета света. Однако, разбивая длинный путь на множество мелких промежутков, можно убедиться, что это заключение верно и в общем случае. Например, глядя на галактику 3C295 и видя, что длины волн в ее спектре на 46 % больше, чем в таблицах спектральных эталонов, мы делаем вывод, что сейчас Вселенная на 46 % больше, чем она была в тот момент, когда свет покинул 3C295.

До сих пор мы занимались тем, что физики называют «кинематикой», т. е. описывали движение, но не интересовались вопросом, какими силами оно управляется. Но не мы первые, кто столкнулся с этой проблемой, – еще столетия назад астрономы и физики пытались понять динамику Вселенной. Неудивительно, что рано или поздно это должно было привести к возникновению вопроса о космологической роли той единственной силы, которую ощущают на себе небесные тела, – силы тяжести.

Как несложно догадаться, первым взявшимся за эту задачу был Исаак Ньютон. В знаменитом письме кембриджскому филологу Ричарду Бентли он указал, что если бы вещество Вселенной было равномерно распределено в конечной области, то оно стремилось бы падать к центру и «образовало бы там одну огромную сферическую массу». С другой стороны, если бы вещество было равномерно рассеяно по бесконечному пространству, то не существовало бы центра, куда оно могло бы падать. В таком случае оно, вероятно, разбилось бы на бесконечное число разбросанных по мирозданию сгустков. По мнению Ньютона, это объясняло бы, откуда взялись Солнце и звезды.

Изучать динамику бесконечной среды оказалось весьма непросто, поэтому до появления общей теории относительности эта область знаний не могла похвастать особыми успехами. Здесь мы не собираемся подробно останавливаться на этой теории, тем более что ее важность для космологии оказалась, как выяснилось впоследствии, несколько преувеличена. Скажем лишь, что Альберт Эйнштейн, взяв на вооружение уже готовый математический аппарат неевклидовой геометрии, трактовал гравитацию как искривление пространства-времени. В 1917 г. – через год после того, как была сформулировала общая теория относительности, – Эйнштейн снова обратился к своим уравнениям, чтобы определить пространственно-временну́ю геометрию всей Вселенной. Следуя господствовавшим тогда космологическим идеям, он искал однородное, изотропное и, к сожалению, статическое решение. Но потерпел фиаско. Чтобы все-таки построить модель, удовлетворявшую его космологическим предпосылкам, Эйнштейн вынужден был ввести в уравнения лишний член – так называемую космологическую постоянную. Хотя последняя в известной мере и подпортила первоначальную элегантность теории, но зато позволила уравновесить гравитационную силу притяжения на больших расстояниях.

Эйнштейновская модель Вселенной с самого начала была статической и потому не предсказывала красных смещений. Однако в том же 1917 г. голландский астроном В. де Ситтер в рамках подправленной теории придумал еще одну модель. На первый взгляд она тоже была статической – в полном соответствии с космологическими взглядами того времени. Но тем не менее имела удивительную способность предсказывать красные смещения, прямо пропорциональные расстоянию! Тогда европейским астрономам еще ничего не было известно о красных смещениях в спектрах туманностей. Впрочем, к концу Первой мировой войны новости о них из Америки в Европу просочились, и модель де Ситтера мгновенно стала популярной. Оказалось, что когда в 1922 г. Артур Эддингтон писал первый исчерпывающий трактат по общей теории относительности, имеющиеся данные по красным смещениям он анализировал как раз в рамках деситтеровской модели. А Хаббл говорил, что именно последняя позволила астрономам распознать важность соотношения между красным смещением и расстоянием, и что он сам, – возможно, неосознанно – имел в виду эту модель, когда в 1929 г. обнаружил пропорциональность красного смещения расстоянию.

Сегодня такое внимание к теории де Ситтера кажется излишним. Начнем с того, что это вовсе не статическая модель. Она выглядела статической из-за особого выбора пространственных координат, тогда как на самом деле расстояния между «типичными» наблюдателями в ней увеличиваются. Это общее разбегание как раз и приводит к красному смещению. Кроме того, последнее в деситтеровской модели оказывается пропорциональным расстоянию просто потому, что она удовлетворяет космологическому принципу. Но, как мы уже показывали, прямую пропорциональность между относительной скоростью и расстоянием следует ожидать в любой теории, в которой справедлив этот принцип.

Что ж, по крайней мере открытие разбегания далеких галактик возбудило интерес к однородным и изотропным моделям, не обладающим свойством статичности. «Космологическая постоянная» в уравнениях гравитационного поля оказалась избыточной, и Эйнштейн немало сожалел, что вообще решил внести поправки в свои первоначальные уравнения. В 1922 г. русский математик Александр Фридман нашел общее однородное и изотропное решение «нетронутых» уравнений Эйнштейна. Именно эти так называемые фридмановские (а не эйнштейновская или деситтеровская) модели обеспечили математический аппарат для большинства современных космологических теорий.

Модели Фридмана делятся на два класса. Если средняя плотность вещества меньше или равна определенному критическому значению, Вселенная будет пространственно бесконечной. В этом случае ее сегодняшнее расширение будет продолжаться вечно. Если же плотность больше критической, то создаваемое веществом гравитационное поле замкнет Вселенную саму на себя. Она будет конечной, но неограниченной – подобно сферической поверхности. (Другими словами, если мы отправимся в путешествие и будем идти все время прямо, то не встретим на своем пути какой-либо границы и вернемся туда, откуда пришли.) В таком случае гравитационные поля настолько сильны, что в конце концов останавливают расширение Вселенной и заставляют ее схлопнуться в состояние с неопределенно большой плотностью, из которого она вышла. При этом критическая плотность пропорциональна квадрату постоянной Хаббла. Взяв популярное сейчас значение 15 км/с на миллион световых лет, получим критическую плотность, равную 5×10–30 грамм на кубический сантиметр, или три водородных атома на тысячу литров космического пространства.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация