Книга Фейнмановские лекции по физике. Современная наука о природе, страница 13. Автор книги Ричард Фейнман

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Фейнмановские лекции по физике. Современная наука о природе»

Cтраница 13

Возникает к тому же и новый взгляд на электромагнитное взаимодействие. В добавление к электрону, протону и нейтрону появляется новая частица, называемая фотоном. Само это новое воззрение на взаимодействие электронов и протонов, т. е. электромагнитную теорию, правильную в квантово-механическом смысле, называют квантовой электродинамикой. Эту фундаментальную теорию взаимодействия света и вещества, или электрического поля и зарядов, следует считать крупнейшим достижением физики. В ней одной таятся главные правила всех обычных явлений, кроме тяготения и ядерных процессов. Например, из квантовой электродинамики выводятся все известные электрические, механические и химические законы, законы соударений бильярдных шаров, движения проводников в магнитном поле, удельной теплоемкости угарного газа, цвета неоновых букв, плотности соли и реакции образования воды из водорода и кислорода. Все это поддается расчету, если условия, в каких протекает явление, просты. Практически этого никогда не случается, но все же мы более или менее понимаем, чтó происходит. И до сего времени не было найдено ни одного исключения из законов квантовой электродинамики, только в атомных ядрах ее оказывается недостаточно; да и про них мы не можем сказать, что здесь наблюдаются какие-то исключения, просто мы не знаем, чтó там происходит.

Далее, квантовая электродинамика – в принципе это также теория всей химии и всех жизненных процессов, если предположить, что жизнь сводится в конечном счете к химии, а значит, и к физике (сама химия уже свелась к физике, и та часть физики, которая включает в себя химию, уже разработана). Мало того, та же квантовая электродинамика, эта величественная наука, предсказывает немало и новых явлений. Во-первых, она говорит о свойствах фотонов очень высоких энергий, гамма-излучения и т. д. Она предсказала еще одно очень оригинальное явление, а именно, что, кроме электрона, должна существовать другая частица с той же массой, но с противоположным зарядом, так называемый позитрон, и что электрон и позитрон, повстречавшись, могут друг друга истребить, излучив при этом свет или гамма-кванты (что, собственно, одно и то же; свет и γ-излучение – лишь разные точки на шкале частот).

По-видимому, справедливо и обобщение этого правила: существование античастицы для любой частицы. Античастица электрона носит имя позитрона; у других частиц названия присвоены по другому принципу: если частицу назвали так-то, то античастицу называют анти-так-то, скажем, антипротон, антинейтрон. В квантовую электродинамику вкладывают всего два числа (они называются массой электрона и зарядом электрона) и полагают, что все остальные числа в мире можно вывести из этих двух. На самом деле, однако, это не совсем верно, ибо существует еще целая совокупность химических чисел – весов атомных ядер. Ими нам и следует сейчас заняться.

§ 4. Ядра и частицы

Из чего состоят ядра? Чем части ядра удерживаются вместе? Обнаружено, что существуют силы огромной величины, которые и удерживают составные части ядра. Когда эти силы высвобождаются, то выделяемая энергия по сравнению с химической энергией огромна, это все равно, что сравнить взрыв атомной бомбы со взрывом тротила. Объясняется это тем, что атомный взрыв вызван изменениями внутри ядра, тогда как при взрыве тротила перестраиваются лишь электроны на внешней оболочке атома.

Так каковы же те силы, которыми нейтроны и протоны скреплены в ядре?

Электрическое взаимодействие связывают с частицей – фотоном. Аналогично этому Юкава предположил, что силы притяжения между протоном и нейтроном обладают полем особого рода, а колебания этого поля ведут себя как частицы. Значит, не исключено, что, помимо нейтронов и протонов, в мире существуют некоторые иные частицы. Юкава сумел вывести свойства этих частиц из уже известных характеристик ядерных сил. Например, он предсказал, что они должны иметь массу, в 200–300 раз большую, чем электрон. И, о чудо! – в космических лучах как раз открыли частицу с такой массой! Впрочем, чуть погодя выяснилось, что это совсем не та частица. Назвали ее µ-мезон, или мюон.

И все же несколько попозже, в 1947 или 1948 г., обнаружилась частица – π-мезон, или пион, – удовлетворявшая требованиям Юкавы. Выходит, чтобы получить ядерные силы, к протону и нейтрону надо добавить пион. «Прекрасно! – воскликнете вы. – С помощью этой теории мы теперь соорудим квантовую ядродинамику, и пионы послужат тем целям, ради которых их ввел Юкава; посмотрим, заработает ли эта теория, и если да, то объясним все». Напрасные надежды! Выяснилось, что расчеты в этой теории столь сложны, что никому еще не удалось их проделать и извлечь из теории какие-либо следствия, никому не выпала удача сравнить ее с экспериментом. И тянется это уже почти 20 лет!

С теорией что-то не клеится; мы не знаем, верна она или нет; впрочем, мы уже знаем, что в ней чего-то недостает, что какие-то неправильности в ней таятся. Покуда мы топтались вокруг теории, пробуя вычислить следствия, экспериментаторы за это время кое-что открыли. Ну, тот же µ-мезон, или мюон. А мы до сей поры не знаем, на что он годится. Опять же, в космических лучах отыскали множество «лишних» частиц. К сегодняшнему дню их уже свыше 30, а связь между ними все еще трудно ухватить, и непонятно, чего природа от них хочет и кто из них от кого зависит. Перед нами все эти частицы пока не тот факт, что имеется куча разрозненных частиц, есть лишь отражение наличия бессвязной информации без сносной теории. После неоспоримых успехов квантовой электродинамики – какой-то набор сведений из ядерной физики, обрывки знаний, полуопытных-полутеоретических. Задаются, скажем, характером взаимодействия протона с нейтроном и смотрят, чтó из этого выйдет, не понимая на самом деле, откуда эти силы берутся. Сверх описанного никаких особых успехов не произошло.

Но химических элементов ведь тоже было множество, и внезапно между ними удалось увидеть связь, выраженную периодической таблицей Менделеева. Скажем, калий и натрий – вещества, близкие по химическим свойствам, – в таблице попали в один столбец. Так вот, попробовали соорудить таблицу типа таблицы Менделеева и для новых частиц. Одна подобная таблица была предложена независимо Гелл-Манном в США и Нисидзимой в Японии. Основа их классификации – новое число, наподобие электрического заряда. Оно присваивается каждой частице и называется ее «странностью» S. Число это не меняется (так же, как электрический заряд) в реакциях, производимых ядерными силами.

В табл. 2.2 приведены новые частицы. Мы не будем пока подробно говорить о них. Но из таблицы по крайней мере видно, как мало мы еще знаем. Под символом каждой частицы стоит ее масса, выраженная в определенных единицах, называемых мегаэлектронвольт, или Мэв (1 Мэв – это 1,782 10−27 г). Не будем входить в исторические причины, заставившие ввести эту единицу. Частицы помассивнее стоят в таблице повыше. В одной колонке стоят частицы одинакового электрического заряда, нейтральные – посерединке, положительные – направо, отрицательные – налево.

Таблица 2.2. Элементарные частицы

Фейнмановские лекции по физике. Современная наука о природе
Вход
Поиск по сайту
Ищем:
Календарь
Навигация