2018. Криоэлектронная микроскопия Дебюше, Франка и Хендерсона
Лауреатами Нобелевской премии по химии за 2017 год стали работающий в швейцарском Университете Лозанны Жак Дюбоше, профессор Колумбийского университета в Нью-Йорке Йоахим Франк и представитель британского Кембриджа Ричард Хендерсон. Поводом для присуждения награды стала «…разработка методов криоэлектронной микроскопии высокого разрешения для определения структур биомолекул в растворе…». Пресс-релиз Нобелевского Комитета сообщал, что метод криоэлектронной микроскопии перевел биохимию в новую эру, позволяя заполнить множество пробелов в «карте биохимии».
Некоторые интернет-ресурсы прямо в день объявления о лауреатах Премии отреагировали броскими заголовками, как, например: «Нобелевскую премию по химии дали за мгновенную заморозку биологических образцов». Так что же важно в этом методе — сам процесс заморозки, адаптация электронной микроскопии к нуждам биохимии, сочетание методов или что-то иное? Давайте попробуем разобраться.
В 1968 году была опубликована заключительная часть научно-популярной трилогии физика Георгия Гамова «Мистер Томпкинс в стране чудес». Она называлась «Мистер Томпкинс внутри самого себя. Приключения в новой биологии». В этой книге рассказывалось, как мистер Томпкинс в сопровождении своего семейного врача изучает клеточное строение своего тела и плавает по своим кровеносным сосудам. Рассказывая о деталях строения клеток и их органоидов, экскурсовод пояснял Томпкинсу, что вся эта информация получена с помощью электронного микроскопа.
Для читателей научно-популярного труда Гамова становилось очевидным, что электронная микроскопия уже позволяет вести изучение биологических тканей и отдельных клеток, допуская получать изображения биологических объектов с невиданной до определенного времени четкостью и детализацией. Однако в отличие от Мистера Томкинса ещё лет десять назад ученым оставалось только мечтать о возможности применения электронного микроскопа для изучения атомно-молекулярной архитектуры биологически активных молекул. Фактически, эта мечта стала былью совсем недавно, лишь спустя четыре десятка лет после углубления Мистера Томпкинса в самого себя. То, что сейчас мы действительно в состоянии применять электронную микроскопию в биохимии, практически полностью является заслугой лауреатов Нобелевской премии по химии 2017 года Жака Дюбоше, Иоахима Франка и Ричарда Хендерсона. Именно благодаря их открытиям и разработкам стало возможным установление всех деталей структуры не образующих монокристаллы биомолекул непосредственно в растворе с помощью криоэлектронной микроскопии.
Путь электронной микроскопии в биохимию не был усыпан розами. Так, вскоре после того, как в 1931 году Эрнст Август Фридрих Руска продемонстрировал принцип работы электронного микроскопа — того устройства, которое принесло ему Нобелевскую Премию по физике 1986 года, венгерский физик Ладислав Мартон написал статью, в которой утверждал, что какой бы интерес не представляло собой новое устройство, шансы его на применение в изучении биологических материалов в настоящем его виде равны нулю из-за того, что «…интенсивная бомбардировка живых клеток электронами будет приводить к их разрушению…» (Nature, 1934, 133, 911–911; DOI:10.1038/133911b0).
Возможно, мы вполне имеем право назвать Мартона одним из тех учёных, благодаря работам которых и стала возможной разработка метода, а перед Дюбоше, Франком и Хендерсоном встала дополнительная, но, согласитесь, приятная задача — подготовка Нобелевской лекции. Дело в том, что именно в том письме в редакцию Nature 1934 года Мартон предложил возможные методы решения адаптации электронной микроскопии для исследования биологических объектов — их заморозка или применение подхода, похожего на ещё на разработанный в те годы метод негативного контрастирования. Тем не менее, предложенные Мартоном подходы к решению в то время можно было назвать ничем иным, как академическим теоретизированием.
Ещё одна проблема, путей решения которой Мартон не видел — как бороться с неизбежным испарением воды из биологического образца в условиях разрежения рабочей камеры электронного микроскопа и связанным с этим испарением изменением форм изучаемых белков и нуклеиновых кислот. Невооружённым глазом было видно и другие проблемы — биологические объекты могли отличаться крайне низкой контрастностью изображения при прохождении через них электронов с высокой энергией; энергию электронного пучка нельзя было делать очень высокой для предотвращения повреждения образца уже на химическом уровне организации; для предотвращения вторичного рассеивания электронов образцы должны были быть не просто тонкими, а представляющими собой идеальный монослой, состоящий из изучаемых объектов. Также было очевидно, что для записи изображений нужно использовать быстрые детекторы — изучаемые биомолекулы могли менять свою форму или даже перемещаться из-за незначительного дрейфа температуры или взаимодействия с бомбардирующими их электронами.
Необходимость изучать низкоконтрастные биологические материалы с использованием электронов, обладающих как можно меньшей энергией, стимулировала разработку новых подходов к приготовлению и подготовке биологических материалов для анализа. Первым методом, применение которого позволило значительно увеличить качество получаемого изображения, был метод негативного контрастирования, разработанный в 1940-х годах и модифицировавшийся следующие два десятка лет после изобретения (J. Applied Physics, 1945, 16, 459–465 DOI: 10.1063/1.1707615; J. Mol. Biol., 1965, 11, 403–423; DOI: 10.1016/S0006-3495(89)82799-7).
Метод негативного контрастирования основан на том, что биологический материал внедряют в тонкую аморфную плёнку соли тяжелого металла (например, фосфата вольфрама), формирующую определенный шаблон вокруг биомолекул. Полученный шаблон рассеивает электроны эффективнее инкапсулированного в него биологического материала, он более устойчив по отношению к повреждению потоком электронов и не дает биологическим молекулам менять форму во время их сушки в вакууме в камере электронного микроскопа.
Негативное контрастирование образцов позволило получать детальную информацию о строении бактерий, вирусов и клеточных органоидов. Однако, при уменьшении масштаба, например, при попытке изучить положение молекул в молекулярных комплексах, можно получить, в лучшем случае, только изображение «конверта», в который помещались биомолекулы; разрешение этого изображения ограничивалось величиной зерна шаблона. Несмотря на изъяны, такой метод подготовки пробы позволил исследователям получить информацию о структуре ряда соединений, правда, в низком разрешении. Разработанные в то время экспериментальные и теоретические подходы, применявшиеся для получения информации о трехмерной структуре объекта с помощью суммирования его двумерных проекций, полученных с помощью электронного микроскопа, заложили основы криоэлектронной микроскопии.