Книга Жизнь замечательных устройств, страница 74. Автор книги Аркадий Курамшин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Жизнь замечательных устройств»

Cтраница 74

Наиболее распространённый среди химиков, изучающих вещества, для которых пока не удалось получить кристалл для изучения методом РСА, или химиков, изучающих химические процессы в растворах, метод ядерного магнитного резонанса (ЯМР), позволяющий различать атомы какого-либо химического элемента в составе разных структурных фрагментов, помогает исследовать биохимические процессы в растворах, предоставляя исчерпывающую информацию об изменениях конфигурации биологически активных молекул. Однако и этот метод ограничен — для его успешного применения нужно получить достаточно концентрированный раствор препарата, поэтому ЯМР можно применять лишь для исследования хорошо растворимых небольших по размеру белков, причём тех, которые растворимы во внутри- или внеклеточной жидкостях, а вот для изучения беков, например, связанных с клеточными мембранами, ЯМР бесполезен.


Жизнь замечательных устройств


Изучение больших белков, белков-рецепторов, связанных с клеточной мембраной или межмолекулярных ассоциатов, образованных сразу несколькими биологическим активными молекулами, значительно облегчается (а в ряде случаев становится исключительно возможным) при применении криоэлектронной микроскопии.


Жизнь замечательных устройств


Преимуществом криоэлектронной микроскопии является то, что для изучения биологической молекулы этим методом нет необходимости готовить её кристаллический образец, а значит, для анализа требуется очень небольшое количество вещества, метод позволяет анализировать частицы, масса которых находится в диапазоне от десятков килодальтон до нескольких мегадальтон. Разновидность метода — криоэлектронная томография — может изучать и более крупные объекты — от комплекса биологически активных молекул до клеточного органоида и даже клетки. Криоэлектронная микроскопия позволяет изучать структуры не только в статичном состоянии — ионный фон, концентрацию низкомолекулярных веществ и рН охлаждаемого для анализа раствора можно систематически менять, что позволяет определять структуру биомолекул и более сложных биологических объектов в окружении, свойства которого максимально близки их естественному окружению в клетке, метод криоэлектронной микроскопии даже позволяет изучить изменения строения фермента в ходе протекания ферменто-катализируемой реакции (Nature, 2015, 521, 241–245; DOI: 10.1038/nature14365). Результаты таких исследований могут применяться на практике — для детального изучения биохимических процессов, изучения строения патогенных вирусов, создания новых и модификации существующих лекарственных препаратов.

Проанализировав историю криоэлектронной микроскопии и ее роль в изучении биохимических систем, Нобелевский комитет решил, что уже доступным в настоящее время и будущим возможностям метод обязан людям, достойными стать лауреатами в 2017 году: Жаку Дюбоше, разработавшему метод приготовления образцов для криоэлектронной микроскопии, Иоахиму Франку, разработавшему математические методы обработки сигналов от ансамблей частиц в растворах и Ричарду Хендерсону, впервые продемонстрировавшему возможность применения криоэлектронной микроскопии для определения структур биомолекул с высоким разрешением.


Жизнь замечательных устройств


Вход
Поиск по сайту
Ищем:
Календарь
Навигация