Книга Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали, страница 21. Автор книги Скотт Бембенек

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали»

Cтраница 21

Закон рассеивания Томсона (томсоновское рассеивание) объясняет поведение энергии, которая не учитывается в первом начале. Представьте себе тепловой двигатель Карно, где для производства работы мы можем использовать только часть тепла, в то время как оставшуюся часть неизбежно поглощает окружающая среда. Таким образом, даже в практически идеальной модели, где используется наиболее эффективный тепловой двигатель, Вселенная все еще требует утечки части тепла. Обойти этот закон, который Томсон считает «универсальной тенденцией», не представляется возможным. Если мы не пытаемся использовать энергию для работы теплового двигателя, то она попросту рассеется, как гласит теория Фурье.

Таким образом, в обоих случаях некоторое количество теплоты рассеивается, но не теряется. Рассеянное тепло уходит в случайном направлении – подобно движению волн океана. Таким образом, не вся энергия одинакова; природа стремится потратить (рассеять) такую энергию, как, например, тепло; и эта потраченная энергия не теряется и не уничтожается, она просто переходит в атомы, составляющие материю, что делает ее недоступной для выполнения работы.

Из этой концепции можно сделать вывод, что «упорядоченная» энергия обладает лучшими качествами по сравнению с «неупорядоченной», поскольку может быть использована для работы. Давайте еще раз обратимся к нашему примеру с океаном и его хаотичной энергией, заключенной в движении волн, и сравним ее с более упорядоченной энергией реки, которая может выполнять работу. Сравнение показывает нам, что рассеивание энергии является процессом ее «деградации» – от лучшего к худшему, от порядка к беспорядку.

Первое начало гласит, что энергия не создается и не уничтожается, но переходит из одной формы в другую, таким образом сохраняясь. Тем не менее закон рассеивания Томсона дает понимание того, что с энергией происходит больше процессов, чем описывает первое начало. Энергия не только сохраняется, но и стремится к рассеиванию. Более того, это рассеивание возникает в результате перехода от более высокого качества (упорядоченности) к низкому качеству (неупорядоченности). Следовательно, у энергии есть «предпочтительное направление», она стремится к рассеиванию, и, чтобы заставить ее двигаться в обратном направлении, необходимо выполнить некую работу . В самом деле, закон рассеивания Томсона, вероятно, был его наиболее важным вкладом в термодинамику. Фактически он является основой второго начала термодинамики.

Глава 7
Предпочтительное направление
Энтропия – указатель природы

У природы, кажется, есть «предпочтительное направление» для определенных процессов. Чашка горячего кофе остывает, отдавая тепло в окружающую среду. Если добавить в эту же чашку сливки, они смешаются с кофе независимо от того, будете вы их размешивать или нет. Спустя некоторое время кофе и окружающая среда будут одинаковой температуры, а сливки и кофе станут однородной жидкостью.

Как все мы знаем, опыт учит нас, что тепло не станет внезапно возвращаться из окружающей среды обратно в кофе, заставляя его опять нагреться. Так и сливки не отделятся внезапно от кофе. Если мы уроним чашку с кухонного стола, она, скорее всего, разобьется после удара об пол. Мы можем догадаться, что сколько бы мы ни ждали, стакан (к нашему разочарованию) вдруг не станет целым, запрыгнув при этом на стол. Нам все же придется убирать осколки стакана. Эти и им подобные процессы называют необратимыми – у них есть предпочтительное направление течения, которое диктуют законы природы, и обратное течение просто не является предпочтительным.

В действительности мы видим, что потоком энергии управляет нечто конкретное, не описанное первым началом. Вместе с переменчивыми представлениями о тепле и желанием инженеров повысить эффективность теплового двигателя возникло понимание новой величины, которая является аналогом энергии. Она объясняет не только возможное количество работы, совершаемой тепловым двигателем, но и то, почему некоторые процессы протекают в определенном направлении (например, почему тепло движется от горячего к холодному). Кроме того, она тесно связана с миром атомов и способствует нашему пониманию микроскопических частиц. Она называется энтропией.

Предпочтительное и неблагоприятное

К 1852 году Томсон пришел к мысли о том, что тепло могло одновременно и преобразовываться в работу, как гласила теория Джоуля, и свободно течь, не производя работы вообще, как считал Фурье. В последнем случае тепло рассеивалось, но не исчезало бесследно, в соответствии с первым началом. Кроме того, Томсон различал энергию высокого и низкого качества и настаивал, что универсальная тенденция для энергии состояла в том, чтобы рассеиваться в качестве тепла, делая его недоступным для работы. Однако Томсон не был единственным, кто размышлял об особенностях тепла.

В 1850 году Клаузиус заявил, что естественное стремление тепла – смена высокой температуры на низкую . Это интуитивное и легко проверяемое заявление было первоначальным вкладом Клаузиуса в то, что в конечном счете станет вторым началом термодинамики (или просто вторым началом). Однако в 1854 году Клаузиус отложил это простое заявление и искал точную математическую формулировку. Конечным результатом стала математическая формулировка второго начала и нового физического свойства , которое он в итоге в 1865 году назовет энтропией.

В 1854 году Клаузиус рассмотрел всеми любимую в то время модель системы: обратимый тепловой двигатель Карно. Клаузиус отметил, что в тепловом двигателе протекают два механизма одновременно: конверсия и кондукция. Конверсия – это процесс, при котором тепло преобразуется в работу и наоборот, тогда как кондукция – это процесс, при котором высокая температура сменяется низкой и наоборот .

Клаузиус утверждал, что для каждого процесса существуют предпочтительное и неблагоприятное направления. Он рассматривал производство тепла в процессе работы как предпочтительное направление, как, например, в экспериментах Джоуля, где источником тепла была работа, производимая падающим объектом или трением. Поэтому Клаузиус считал неблагоприятным потребление тепла для выполнения работы, подобно тому, как это происходит в тепловом двигателе. По его мнению, для кондукции предпочтительным ходом является (очевидно) движение от высокой температуры к низкой, и, наоборот, переход от низкой температуры к высокой он считал неблагоприятным. Тогда как предпочтительные процессы следуют законам природы сами по себе неблагоприятные необходимо инициировать.

Например, чтобы получить работу из тепла, вам необходимо специальное устройство вроде теплового двигателя; в противном случае тепло просто рассеется, не производя работы. Однако предпочтительный процесс, следующий законам природы, где тепло производится в процессе работы, протекает сам по себе. Он возникает при любом усилии за счет трения. Каждый раз, когда ваши ноги касаются пола при ходьбе, или когда шины вашего автомобиля скользят по асфальту, или когда ваши пальцы барабанят по клавиатуре, трение обращает ваши усилия в тепло.

Совершенно ясно, что предпочтительное движение тепла – от более высокой температуры к более низкой; вот почему в природе многое охлаждается само по себе, но никогда не нагревается самостоятельно. Изменение тепла с низкой температуры на высокую требует работы теплового насоса (как мы и говорили ранее), такого как кондиционер или холодильник. Благодаря этим идеям и тепловому двигателю Карно Клаузиус пришел к удивительному заключению.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация