Можно предположить, что повторяющаяся обработка всех экспериментальных данных, возможно, позволила бы Дальтону выяснить соотношение атомных масс путем систематического устранения несоответствий – это было бы невероятно громоздкой работой. К счастью, новое решение ждало буквально за углом.
Глава 12
Последние сомнения разрешены
Атом как физическая реальность
К середине XIX века открытие первого начала и связанные с ним исследования нанесли окончательный удар по теплородной теории и ввели понятие энергии. Хотя не все были убеждены, но популярная теория, что тепло возникает вследствие движения элементарных частиц вещества, привлекла еще больше внимания к атомам.
В XIX веке ученые-новаторы, такие как Клаузиус, Максвелл и Больцман, строили свои теории, основываясь на предположительно существующих атомах. Позже, в 1905 году, молодой Альберт Эйнштейн написал труд (работая в патентном бюро) о хорошо известном физическом явлении того времени – броуновском движении, которое впервые было упомянуто в 1827 году.
Теория Эйнштейна правильно описала броуновское движение и основывалась на существовании атомов, которые пребывали в постоянном движении. Кроме того, теория Эйнштейна позволила получить первые экспериментальные доказательства существования атомов. Опыты, проведенные вскоре после этого, наконец подтвердили прогнозы, сделанные в новой теории Эйнштейна. Атом как физическое явление природы (а не просто удобный инструмент наглядного представления) теперь навсегда закрепился в современной химии и физике.
Смешивая объемы
В 1808 году Жозеф Гей-Люссак (1778–1850) повторял известный эксперимент по получению водяного пара из газов – водорода и кислорода. Ему удалось сделать это путем смешивания определенных объемов каждого из газов и воспламенения смеси при помощи электрической искры. Он заметил, что объемы кислорода и водорода, участвующие в реакции (объединяющиеся объемы), относятся друг к другу как небольшие целые числа. На самом деле, при тщательном исследовании не только собственной работы, но и других работ, он пришел к заключению, что объемы газов, участвующих в химической реакции, всегда относятся друг к другу как простые целые числа:
«Кажется, что газы при взаимодействии всегда объединяются в простых отношениях; и мы в действительности наблюдали во всех предыдущих примерах, что это такие отношения, как 1: 1, 1: 2, 1: 3».
Кроме того, Гей-Люссак заметил, что если конечным продуктом реакции также был газ, то его объем и объемы газов, участвующих в реакции, также относились как целые числа. Например, он обнаружил, что при смешивании объемов водорода и кислорода для получения водяного пара происходит следующее:
2 объема водорода (газ) + 1 объема кислорода (газ) → 2 объема водяного пара.
Закон объемных отношений Гей-Люссака похож на другой известный закон. Дальтон точно так же рассуждал не об объемах, но об атомах, вовлеченных в химические реакции: атомы при химической реакции с образованием молекул объединяются в простых отношениях целых чисел. Таким образом, можно предположить, что Дальтон был счастлив услышать об этих результатах, возможно даже считал их полезными для переосмысления противоречий его собственной атомной теории. Но это было очень далеко от истины.
Дальтон справедливо предположил, что у разных атомов разные размеры. Он также полагал, что атомы газа расположены очень плотно, что они прямо соприкасаются друг с другом. За счет малого расстояния между ними атомы остаются неподвижными. Поэтому, согласно модели Дальтона, если вы хотите заполнить воздушный шар каким-либо газом, для этого понадобится больше маленьких атомов, чем больших.
По аналогии вообразите обычную коробку (в этом примере она выступает вместо шара), в которую мы хотим поместить шары (атомы), заполнив ее целиком. Теперь представим, что мы используем мячи для гольфа, укладывая их в коробку максимально плотно. Отметив, сколько мячей для гольфа потребовалось, чтобы заполнить коробку, мы освобождаем ее и начинаем снова. Однако на этот раз вместо мячей для гольфа мы используем баскетбольные мячи. Как и с мячами для гольфа, мы укладываем их максимально плотно. Как и ожидалось, чтобы полностью заполнить ту же самую коробку, требуется меньше баскетбольных мячей, чем мячей для гольфа.
Что беспокоило Дальтона в результатах Гей-Люссака: казалось, что они гласили, будто независимо от типа атома (элемента) или его размера всегда нужно одно и то же количество атомов, чтобы заполнить один и тот же объем – то есть коробку полностью заполнит одинаковое количество мячей для гольфа или баскетбола. Что еще хуже, Дальтон думал: что если результаты Гей-Люссака означают, будто все атомы имеют одинаковый размер?
Дальтон отказывался верить результатам исследований Гей-Люссака и находил утешение в собственных экспериментах, которые показывали ошибки в результатах Гей-Люссака. Однако реальность была такова, что именно результаты исследований Дальтона были неверными, поскольку опыты были довольно трудными, а Дальтон был посредственным экспериментатором. Однако новая теория, казалось, давала некое новое понимание.
Число Авогадро
В 1811 году Амедео Авогадро (1776–1856) (урожденный Лоренцо Романо Амедео Карло Авогадро ди Куаренья э ди Черрето), посмотрев на результаты исследований Гей-Люссака, пришел к заключению, что при равных температуре и давлении равные объемы газа (например, два воздушных шара одинакового размера) содержат одинаковое количество «частиц». Эти частицы могут быть отдельными атомами, молекулами или даже составлять их смесь.
Таким образом, если два воздушных шара имеют одинаковый размер, один из которых заполнен гелием, а другой простым воздухом (смесью кислорода, углекислого газа, азота и водяного пара), то количество частиц в каждом из них будет одинаковым при том условии, что их температура и давление (комнатная температура и атмосферное давление) одинаковы. Авогадро не был первым, кто предложил эту теорию, но он первым сформулировал ее как полноценную научную концепцию. Из закона Авогадро следуют некоторые очень интересные выводы.
Если при постоянных температуре и давлении в определенном объеме содержится одинаковое количество частиц, то теории Дальтона и Авогадро противоречат друг другу. В чем же проблема? Вспомните: Дальтон считал, что у атомы разных типов отличаются размерами. Это было разумным предположением, и сегодня мы знаем, что оно было верным. Однако Дальтон также предположил, что атомы газа расположены очень близко друг к другу, из-за чего он не верил в действие на расстоянии. Поэтому для Дальтона воздушный шар, заполненный газом, внутри был плотно заполнен атомами. Проблема была именно в этом. Давайте вернемся к нашей аналогии.
Ранее мы укладывали шары (или мячи для гольфа, или баскетбольные мячи) в коробку до тех пор, пока она не заполнялась целиком. На этот раз давайте откажемся от этого требования, но вместо одной коробки мы представим две одинаковых. В одну мы поместим баскетбольный мяч, а в другую – мяч для гольфа. Мы продолжим класть мячи в коробки до тех пор, пока одна из них не заполнится. Коробка с баскетбольными мячами заполнится первой (так как они больше, чем мячи для гольфа, а коробки имеют один и тот же размер), поэтому мы остановим эксперимент, как и обещали.