Главным беспокойством, которое вызывала атомная модель Бора у Резерфорда, было отсутствие детерминированного поведения:
«Для меня представляется серьезной трудностью то, что Вы, без сомнений, прекрасно понимаете, а именно – как электрон [который вот-вот совершит переход] решает, на какой [энергетический уровень] он собирается [совершить переход, когда он] будет переходить с одного [энергетического уровня] на другой? Мне кажется, Вам придется предположить, что электрон заранее знает, куда ему перейти».
Гейзенберг эффективно решил эту проблему, включив набор вероятностей переходов, он утверждал, что в квантовой реальности нет привычного детерминизма классической физики, столь желанного для Резерфорд. Вместо этого различные переходы случаются просто в соответствии с их вероятностями. Такой прецедент уже был в работе Эйнштейна 1916–1917 годов, где он использовал концепцию вероятностей перехода для атомов, взаимодействующих со светом
.
К тому моменту, как Гейзенберг вернулся из Гельголанда, у него в руках был свой вариант квантовой механики, и он тут же начал записывать результаты, хотя и не без сомнений, доверяя их своему отцу в письме: «В данный момент моя собственная работа идет не особенно хорошо. У меня получается не очень много, и я не знаю, появится ли вообще из всего этого другая [статья] в этом семестре».
В начале июля 1925 года неуверенный Гейзенберг поехал к Борну со своей статьей и попросил его просмотреть ее и решить, стоит ли ее публиковать. При чтении статьи Борн был поражен математическими сущностями, возникающими из теории Гейзенберга, и был уверен, что видел их где-то раньше. Наконец в письме к Эйнштейну он вспомнил, что «[математический формализм] Гейзенберга не давал мне покоя, и после дней сосредоточенных размышлений и проверки я вспомнил об алгебраической теории, о которой я узнал от моего учителя…»
Теория, которую назвал Борн, была матричной алгеброй, а конкретнее, он вспомнил о правиле перемножения двух матриц. Поскольку в то время матрицы не были общеизвестными, Борн был одним из немногих физиков, кто реально мог их распознать. В конце месяца Борн направил статью Гейзенберга в журнал на публикацию.
Новая квантовая механика Гейзенберга была представлена в статье под названием «О квантовотеоретическом истолковании кинематических и механических соотношений». В сентябре 1925 года Борн и его молодой помощник Паскуаль Йордан (1902–1980) сразу же расширили и уточнили исследование Гейзенберга. Все трое объединились для написания третьей статьи («Работы трех»), принятой в ноябре 1925 года. С этим окончательными усилиями они провозгласили, что обнаружили долгожданную квантовомеханическую теорию
. И все это было проделано перед тем, как в журнал приняли первую статью Шрёдингера (27 января 1926 года). Конечно, Шрёдингер, когда формулировал волновую механику, знал о первых двух статьях, но не о третьей. Так или иначе, они никак не повлияли на его работу.
Это связано с тем, что с математической точки зрения два подхода сильно отличаются друг от друга. Центральным элементом в подходе Шрёдингера является волновое уравнение, дифференциальное уравнение в частных производных, решение которого дается столь важной волновой функцией. Формализм Гейзенберга никак не связан с волновым уравнением или какими-то другими уравнениями в частных производных; вместо этого там используются матрицы, вот почему он часто называется матричной механикой. Также его формализм по своему замыслу предполагает дискретные уровни энергии и соответствующие вероятности перехода, тогда как в волновой механике Шрёдингера эти уровни энергии не заложены – они просто получаются естественным путем при решении волнового уравнения и наложении правильных граничных условий на непрерывное решение – волновую функцию.
Что касается вероятностной природы, присутствующей в теории Гейзенберга, – да, ясно, что она отсутствует в формализме Шрёдингера. Это может показаться вам довольно странным, поскольку мы неоднократно замечали, что вероятность кажется внутренне присущей квантовой механике. Чуть позже мы увидим, что вероятность внутренне присуща и теории Шрёдингера; она просто слегка прячется сначала. То есть внешне эти теории кажутся очень разными, не только математически, но и по их физическому описанию, тот факт, на который их сторонники обращали внимание.
Шрёдингер подчеркивал непрерывную (присущую классической механике) природу своей теории, представляя электронные переходы в атомах, с которыми связано излучение или поглощение света – не с помощью перескакивающих электронов, как изначально описывал Бор, а с помощью плавных переходов, при которых колеблющийся электрон (чем-то подобный одному из резонаторов Планка) просто «переходит» из одного колебательного состояния в другое:
«Вряд ли нужно обращать внимание на то, насколько более удобно представить, что при квантовом переходе энергия изменяется из одной формы колебаний в другую, чем думать о перескакивающем электроне».
Шрёдингер не скрывал свою неприязнь к теории Гейзенберга с ее матрицами, перескакивающими электронами и отсутствием интуитивно понятной физической картины:
«Я, разумеется, знал о теории [Гейзенберга], но чувствовал разочарование, если не отвращение, по отношению к тому, что явилось мне как очень сложные методы [матричной механики] и отсутствие ясности».
Кроме того, Шрёдингер считал, что его теория была с физической точки зрения более понятной, тем самым давая более твердое основание для решения и понимания физических проблем, тогда как вариант Гейзенберга был всего-навсего картиной из абстракций и сложной математики. В письме к другу он отмечал: «Все философствование по поводу “принципиальной наблюдаемости” только замалчивает нашу неспособность угадать правильное положение дел».
Шрёдингер на самом деле думал, что его практически визуализируемый волновой механики лучше всего послужил практическому и интеллектуальному развитию квантовой механики.
«Как мне кажется, чрезвычайно сложно бороться с проблемами [квантовой механики], когда мы считаем необходимым подавление интуиции эпистемологическими основаниями в области атомной динамики и оперирование такими абстрактными понятиями, как вероятности переходов, уровни энергии и т. д.».
Гейзенберг верил, что его теория запечатлела подлинную сущность квантовой механики, описывая ее как «истинную теорию дискретного», и выразил подобное негодование в адрес волновой механики Шрёдингера. Гейзенберг писал своему другу, Вольфгангу Паули (1900–1958):
«Чем больше я думаю о физическом компоненте теории Шрёдингера, тем более отталкивающим я его нахожу. …То, что Шрёдингер пишет о визуализации своей теории, мягко говоря, “возможно, не совсем правильно”, а другими словами, ерунда».
И вот, когда показалось, что эти два варианта квантовой механики не могут отличаться еще больше, Шрёдингер написал статью «Об отношении квантовой механики Гейзенберга – Борна – Йордана к моей», показывая, что – как минимум с математической точки зрения – они являются одним и тем же.
Для физиков это была прекрасная новость, поскольку она означала, что можно было использовать любой из подходов для решения физических проблем. Иначе говоря, многие из физиков вздохнули с облегчением, потому что могли использовать вариант Шрёдингера, поскольку математика была намного менее громоздкой, чем матрицы теории Гейзенберга, и уже знакомой им по физическим проблемам, которые они решили раньше. Тем не менее физическая интерпретация обеих теорий была по-прежнему доступной всякому желающему.