В сентябре 1926 года Бор пригласил Шрёдингера в Копенгаген прочитать лекцию и обсудить волновую механику более подробно. Не успел Шрёдингер сойти с поезда, как Бор начал спорить на тему физических интерпретаций квантовой механики. За несколько дней Бор стал даже более неутомимым в дискуссиях, начиная их рано утром и продолжая их до поздней ночи. Также, чтобы исключить возможность всяких отвлечений, Бор договорился, чтобы Шрёдингер гостил у него дома. Наиболее подробный отчет об этом визите поступил от Гейзенберга – в то время он был ассистентом Бора в институте. Он вспоминал: «Хотя Бор, как правило, был исключительно добрым и внимательным в отношениях с людьми, теперь он мне представился подобным безжалостному фанатику…»
Шрёдингер понимал свое волновое уравнение буквально, видя в квантовом объекте, подобном электрону, волну, а не частицу. Для него волновая функция была на самом деле материальной волной, описывающей, куда в пространстве различные части электрона были в действительности рассеяны. Также он настаивал на возможности чего-то наподобие визуализируемого построения внутренней работы атома.
Бор был полностью против. Он был согласен с Борном, что волновая функция описывала квантовую вероятность, а не что-то наподобие реальной физической волны. В течение их обсуждения Бор выступал в пользу корпускулярной концепции квантовых объектов, но позднее для полного описания он потребовал как корпускулярную, так и волновую концепцию – полную реализацию «синтетической концепции» Эйнштейна 1909 года. Однако важнейшим предметом спора были перескакивающие электроны из атомной модели Бора.
По мнению Шрёдингера, сама идея перескакивания электронов из одного стабильного, или стационарного, дискретного квантового состояния в другое была нелепой: «Вы, господин Бор, несомненно, должны понять, что вся эта идея квантовых скачков с необходимостью приводит к абсурду… Иначе говоря, вся эта идея квантовых скачков – чистая фантазия».
Кто мог его обвинить? Атомная модель Бора не предлагала никакого «действительного» объяснения тому, почему электроны не падают на ядро, как это было бы в классической физике. Там просто была введена концепция стационарных квантовых состояний, которые являлись «магическими орбитами», избавлявшими электрон от этой трагической судьбы. И если это не слишком мешало, дальше нужно было признать, что электрон мог перескакивать между этими стационарными квантовыми состояниями просто при поглощении или излучении фотона, невзирая на то, что именно на самом деле управляло этим процессом.
Бор признавал, что принять эти концепции было сложно, но считал, что главная проблема Шрёдингера, связанная со всем этим, уходила корнями в его потребность в наглядной работе:
«…она не доказывает, что квантовых скачков нет. Она лишь доказывает, что мы не можем их представить, что наглядные концепции, с которыми мы описываем явления в повседневной жизни и эксперименты в классической физике, непригодны, когда дело касается описания квантовых скачков. Нам также не следует удивляться, когда мы обнаруживаем такую непригодность, видя, что рассматриваемые процессы не являются объектами непосредственного опыта».
Шрёдингер продолжал настаивать на том, что устранение дискретных квантовых состояний принятием его волновой картины электрона разгадает «квантовую таинственность». Бор подчеркивал, что и закон излучения Планка, и работа Эйнштейна по взаимодействию света и вещества требовали дискретных квантовых состояний. Неужели Шрёдингер собирался разрушить самые основания квантовой механики? Более того, Бор утверждал, что эксперименты уже подтвердили эту дискретную природу атома самыми различными способами. На это расстроенный Шрёдингер ответил: «Если все эти проклятые квантовые скачки реально никуда не денутся, я буду сожалеть, что вообще ввязался в квантовую теорию».
Через несколько дней Шрёдингер заболел и лежал в постели с жаром; возможно, Бор его в конце концов измотал. Госпожа Бор присматривала за ним, принося ему чай и пирог в кровать, а все это время сам Бор сидел на краю кровати, продолжая спорить: «Но, без сомнений, господин Шрёдингер, вы должны понимать…»
Но Шрёдингер не мог понять. Хотя обсуждение сильно повлияло на каждого из них, в конце они не смогли найти решение. Тем не менее, Бор и Шрёдингер остались друзьями.
Как только Шрёдингер уехал, дискуссии продолжились, но теперь между Бором и Гейзенбергом. Гейзенберг вспоминал: «В течение нескольких следующих месяцев [после визита Шрёдингера] физическая интерпретация квантовой механики была центральной темой всех разговоров между Бором и мной».
Как и у Бора со Шрёдингером, разговоры между Бором и Гейзенбергом были столь же напряженными, хотя теперь продолжались месяцами, а не несколько дней. К февралю 1927 года они уже поднадоели друг другу, что побудило Бора удалиться на лыжную экскурсию в Норвегию и наконец оставить Гейзенберга наедине с его мыслями – к большому его облегчению. За несколько дней Гейзенберг уже обнаружил кое-что.
Вспомним, что, используя формализм Шрёдингера, Борн заключил: квантовая частица не следует по детерминированной траектории, как это было бы в классической механике. Вместо этого квантовым состоянием, в котором она была (и будет позже), полностью управляла внутренне присущая квантовая вероятность. Гейзенберг задался таким вопросом: а что если мы реально попытаемся измерить траекторию электрона, или, что проще, положение и импульс электрона? В оригинальном мысленном эксперименте Гейзенберг вообразил микроскоп, способный выполнить такое задание.
Итак, микроскоп работает, потому что фотон (идущий от источника света) отскочил (отразился) от объекта (вроде электрона) и в конце концов прошел через линзу, за которой чей-то глаз или некоторый другой детектор его замечает. Из классической волновой оптики уже было известно, что неопределенность (разрешающая способность) положения объекта непосредственно связана с длиной волны используемого фотона. Так, если вы хотите добиться лучшего разрешения положения объекта, вам нужно использовать фотон меньшей длины волны. Иначе говоря, если вы хотите измерить нечто, вам нужно использовать «линейку» с более точными, или меньшими, делениями. Более того, было также известно, что неопределенность положения обратно пропорциональна диаметру линзы, используемой для того, чтобы собрать упомянутые нами фотоны. Опять же, все это следует из классической волновой оптики – пока еще ничего квантового не происходит, кроме того, что мы называем свет фотоном. Теперь, когда мы справились с определением положения электрона, давайте перейдем к импульсу.
Когда фотон отскакивает от электрона, то при столкновении они обмениваются импульсом. Импульс, потерянный фотоном, будет по модулю равен приобретенному электроном – суммарный импульс сохраняется. Ясно, что если мы можем определить, насколько изменился импульс фотона, тогда мы сможем определить импульс электрона до столкновения
, что даст нам и положение, и импульс электрона одновременно. Однако есть небольшая проблема. На самом деле мы не знаем направление полета падающего фотона после того, как он отскочит от электрона. Мы точно знаем только то, что он принадлежал «диапазону направлений», при движении в каждом из которых он в результате пройдет через линзу, тем самым позволяя нам определить положение электрона (в пределах неопределенности, отмеченной выше). А теперь этот диапазон направлений можно сузить, чтобы уменьшить неопределенность направления импульса фотона. Все, что нам нужно сделать, – это уменьшить диаметр линзы микроскопа.