Книга Дарвинизм в XXI веке, страница 124. Автор книги Борис Жуков

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Дарвинизм в XXI веке»

Cтраница 124

В ходе дальнейшей эволюции у разных его потомков одни части «универсального генома» включались в работу (даря своим счастливым обладателям новые органы и функции), а другие необратимо терялись. Что и сформировало в конце концов нынешнее разнообразие групп многоклеточных. На вопрос о том, как же мог возникнуть геном, бóльшая часть которого низачем не нужна его обладателю, но когда-нибудь в отдаленном будущем понадобится его потомкам, Шерман в своих научных статьях не отвечает (констатируя только, что, уж конечно, не в результате естественного отбора). Однако он вполне благожелательно отнесся к пересказу своей теории на фундаменталистском сайте (и в последующих лекциях главного идеолога этого сайта), в котором идея «универсального генома» прямо рассматривалась как несомненное свидетельство наличия в эволюции «разумного замысла». Причем там она, разумеется, подавалась не как экстравагантная гипотеза дилетанта [256], занявшегося на досуге эволюционным теоретизированием, а как «современные научные взгляды».

Разбирая построения Шермана, биолог-эволюционист Виктория Скобеева ядовито заметила, что всем тем чертам, которые Шерман приписывает обладателю «универсального генома» (то есть общему предку всех многоклеточных), наилучшим образом отвечает Ктулху — исполинский монстр, созданный воображением американского писателя-фантаста Говарда Филлипса Лавкрафта: он не пользуется геномом (поскольку спит вечным сном), не размножается (что гарантирует его от накопления ошибок, неизбежного при тиражировании нефункциональных генетических текстов), имеет сверхъестественное происхождение и в своем внешнем облике сочетает черты самых разных существ (что свидетельствует о наличии у него соответствующих генов). Если же говорить серьезно, то, я полагаю, читатели уже поняли, в чем состоит главная ошибка подобных построений: они основаны на отождествлении гена с его функцией в целостном организме. Между тем, как мы уже говорили несколькими страницами выше, смена функций, порой весьма радикальная — весьма обычное дело в ходе эволюции, известное эволюционистам еще с первых последарвиновских десятилетий.

Никого давным-давно не удивляет, что кровососущий аппарат комара, рабочий инструмент пчелы-плотника, «механическая швабра» комнатной мухи и смертельный капкан жужелицы сделаны из одних и тех же исходных элементов. Или — совсем уж хрестоматийный пример — что в плавнике кистеперой рыбы можно различить те же косточки, что и в крыле птицы, ноге лошади, руке обезьяны и лапе крота. Никто не делает из этого вывод, что кистеперой рыбе (которая, естественно, не летала, не скакала, не рыла подземные ходы и ничего не хватала руками) эти косточки были не нужны, и не предполагает существование какого-нибудь «универсального скелета», в котором содержатся все функции скелетных элементов всех будущих эволюционных потомков. Так почему же точно такие же эволюционные эффекты на уровне генов толкают людей на подобные фантазии?


Дарвинизм в XXI веке

Чтобы ответить на этот вопрос, придется вспомнить главу «Атомы наследственности»: о генах и их роли в организме наука узнала по их внешним проявлениям. Почти век гены были чистой абстракцией — их материальная природа оставалась совершенно неизвестной, и некоторые биологи (в том числе и весьма крупные) всерьез допускали, что у них ее нет вовсе. Не удивительно, что за это время прочно укоренилась традиция именовать гены по производимому ими эффекту: «ген красных глаз», «ген крыльев» (он же «ген бескрылости»), «ген устойчивости к антибиотику» и т. д. А дальше срабатывает обычный психологический эффект: если некий ген известен как «ген развития глаз», то обнаружение его у губок вызывает шок: им-то, мол, он зачем?!

На самом деле подобные «конечные признаки» присущи гену только в сложном целостном организме (и, как правило, являются результатом работы не только его, но и множества других генов — так что «генов глаз» или «генов крыльев» у одного и того же организма могут быть сотни). С точки же зрения самого гена, он (и кодируемый им белок) может и у человека, и у губки делать одно и то же.

В главе «Интерлюдия или сюита? Или Легенда о Золотом веке» мы уже упоминали белки опсины, имеющиеся и у человека, и у некоторых бактерий. У бактерий они выполняют функцию пигмента фотосинтеза (то есть делают то же, что в зеленых растениях делает хлорофилл). У нас они присутствуют в сетчатке, в клетках-фоторецепторах, где служат своего рода фотоэлементом. Но это клетка «знает», для чего ей нужен опсин, а сам белок и там, и там делает одно и то же: захватывает квант света и за счет его энергии производит некое химическое изменение. А уж во что это изменение выльется — в синтез органической молекулы или в нервный импульс, побежавший по одному из волоконец зрительного нерва, — не его, белка, дело. И не его гена.

«Столь же показательный пример консервативности самого белка и разнообразия его морфогенетической роли — это Toll-like рецепторы, — пишет В. Скобеева. — У позвоночных они участвуют в реакциях врожденного иммунного ответа, опознавая молекулярные структуры, характерные для возбудителей болезней. У дрозофилы Toll-рецепторы участвуют в определении спинно-брюшной оси тела. Однако „с точки зрения“ самого белка Toll его функция остается неизменной — это трансмембранный белок, узнающий какую-то молекулу во внешней среде и передающий сигнал внутрь клетки».

Мы пока не знаем, для чего именно служит губке «ген глаз», а амебе — «ген хорды». Но можно не сомневаться: они не обретаются там в ожидании, когда их приставят к делу грядущие усложнившиеся потомки, а работают [257]. Как и ген Peg10, с которого мы начали этот разговор. Разумеется, у вируса, подарившего нам этот ген, никакой плаценты нет и быть не может. Зато у него есть задача: на какой-нибудь кривой козе объехать иммунную систему, сделать так, чтобы она не поднимала тревоги при его появлении в организме. И точно такая же задача стоит (в числе прочих) и перед плацентой: ведь она по большей части состоит из клеток зародыша, а у него с матерью общих генов — только половина. С точки зрения иммунной системы и зародыш, и плацента — сплошное скопище чужих антигенов. Для нормального развития плода жизненно необходимо подавить иммунную реакцию на него со стороны материнского организма (но при этом не разрушить и не отключить материнскую иммунную систему вовсе, чтобы организм матери не остался беззащитным перед инфекциями). И здесь вирусный белок, обеспечивающий именно такой эффект, оказался просто бесценным подарком [258].

Вход
Поиск по сайту
Ищем:
Календарь
Навигация