Книга Наука логики. Том 1, страница 79. Автор книги Георг Гегель

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Наука логики. Том 1»

Cтраница 79

Несоизмеримость, имеющая место в примере, приводимом Спинозой, заключает в себе вообще криволинейные функции и приводит к тому бесконечному, которое ввела математика при действиях с этими функциями и вообще при действиях с функциями переменных величин; последнее есть именно то истинно математическое, качественное бесконечное, которое мыслил также и Спиноза. Это определение мы должны здесь рассмотреть ближе.

Что касается прежде всего признаваемой столь важной категории переменности, под которую подводятся соотносимые в этих функциях величины, то они ближайшим образом переменны не в том смысле, в котором в дроби 2/7 переменны оба числа 2 и 7, поскольку вместо них можно поставить также 4 и 14, 6 и 21 и т. д. до бесконечности без изменения значения дроби. В этом смысле можно еще с большим правом поставить в дроби a/b вместо a и b любые числа без изменения того, что должно выражать собою a/b. Лишь в том смысле, что также и вместо x и y в какой-либо функции можно поставить бесконечное, т. е. неисчерпаемое множество чисел, a и b суть такие же переменные величины, как и x и y. Поэтому выражение «переменные величины» страдает неясностью и неудачно выбрано для определений величин, интересность которых и способы действий над которыми коренятся в чем-то совершенно другом, чем только в их переменности.

Чтобы сделать ясным, в чем заключается истинное определение тех моментов какой-нибудь функции, которыми занимается высший анализ, мы должны снова вкратце обозреть указанные выше ступени. В дробях 2/7 или a/b числа 2 и 7, каждое само по себе, суть определенные количества и соотношение для них несущественно; a и b также должны быть представителями таких определенных количеств, которые остаются тем, что они суть, также и вне отношения. Далее, 2/7 и a/b суть также некоторые постоянные определенные количества, некоторые частные; отношение составляет некоторую численность, единицей которой служит знаменатель, а численностью этих единиц – числитель или обратно. Если бы мы подставили вместо 2 и 7–4 и 14 и т. д., то отношение осталось бы тем же самым, так же и как определенное количество. Но это существенно изменяется, например, в функции; y2/x=p здесь, правда, x и y имеют значение определенных количеств; но определенное частное имеют не x и y, а лишь x и y2. Благодаря этому указанные члены отношения x и y не только не суть, во-первых, такие-то определенные количества, но и, во-вторых, их отношение не есть некоторое постоянное определенное количество (а также и не имеется в виду таковое, как это, например, имеет место при a и b), не есть постоянное частное, а это частное как определенное количество совершенно переменно. Но это зависит только от того, что x находится в отношении не к y, а к квадратуy. Отношение некоторой величины к степени есть не определенное количество, а, по существу, качественное отношение. Степенное отношение есть то обстоятельство, которое должно рассматриваться как основное определение. В функции же прямой линии y = ax выражение y/x=a есть обыкновенная дробь и частное; эта функция есть поэтому лишь формально функция переменных величин или, иначе говоря, x и y представляют собою здесь то же самое, что a и b в a/b, они не имеют того определения, под которым их рассматривает дифференциальное и интегральное исчисление. Вследствие особенной природы переменных величин в этом способе рассмотрения было бы целесообразно ввести для них как особое название, так и особые обозначения, отличные от обычных названия и обозначений неизвестных величин в каждом конечном, определенном ли или неопределенном уравнении, – это было бы указанием их существенного отличия от таких просто неизвестных величин, которые в себе суть вполне определенные количества или определенная совокупность определенных количеств. И в самом деле, лишь отсутствие сознания своеобразия того, что составляет интерес высшего анализа и чем вызваны потребность в дифференциальном исчислении и изобретение его, привело к включению функций первой степени, каково уравнение прямой линии, в состав этого особого исчисления; доля вины за такой формализм ложится также и на то недоразумение, по которому полагают, что возможно выполнить само по себе правильное требование обобщения какого-нибудь метода тем, что опускается та специфическая определенность, на которой основана потребность в этом методе, так что считается, что дело идет в рассматриваемой нами области только о переменных величинах вообще. Значительная доля формализма в рассмотрении, равно как и трактовке этих предметов, несомненно, не имела бы места, если бы поняли, что дифференциальное исчисление касается не переменных величин как таковых, а степенных определений.

Но имеется еще дальнейшая ступень, на которой выступает в своем своеобразии математическое бесконечное. В уравнении, в котором x и y положены ближайшим образом как определенные некоторым степенным отношением, x и y как таковые должны еще означать некоторые определенные количества; и вот это значение совершенно утрачивается в так называемых бесконечно малых разностях, dx, dy уже не суть определенные количества и не должны обозначать таковых, а имеют значение лишь в своем соотношении, имеют смысл лишь как моменты. Они уже больше не суть нечто, если принимать нечто за определенное количество, не суть конечные разности; но они также и не суть ничто, не суть лишенный определения нуль. Вне своего отношения они – чистые нули, но их следует брать только как моменты отношения, как определения дифференциального коэффициента dx/dy.

В этом понятии бесконечного определенное количество подлинно завершено в некоторое качественное наличное бытие; оно положено как действительно бесконечное; оно снято не только как то или иное определенное количество, а как определенное количество вообще. Но при этом сохраняется количественная определенность как элемент определенных количеств, как принцип или, как также выражались, она сохраняется в своем первом понятии.

Против этого понятия и направлено все то нападение, которому подверглось основное определение математики этого бесконечного, – дифференциального и интегрального исчисления. Неправильные представления самих математиков вызвали непризнание этого понятия; но преимущественно вина за эти нападки ложится на неспособность оправдать этот предмет как понятие. Но понятия, как было указано выше, математика не может здесь обойти, ибо как математика бесконечного она не ограничивается рассмотрением конечной определенности своих предметов – как, например, в чистой математике пространство и число и их определения рассматриваются и соотносятся друг с другом лишь со стороны их конечности, – а она приводит заимствованное оттуда и рассматриваемое ею определение в тождество с его противоположностью, превращая, например, кривую линию в прямую, круг в многоугольник и т. д. Поэтому действия, к которым она позволяет себе прибегать в дифференциальном и интегральном исчислении, находятся в полном противоречии с природой исключительно только конечных определений и их соотношений и, стало быть, могли бы найти свое оправдание только в понятии.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация