Книга Наука логики. Том 1, страница 90. Автор книги Георг Гегель

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Наука логики. Том 1»

Cтраница 90

Анализируя метод ближе, мы увидим, что истинный ход действия в нем таков. Во-первых, степенные определения (разумеется, переменных величин), содержащиеся в уравнении, понижаются, приводятся к их первым функциям. Но этим меняется значение членов уравнения. Поэтому уже нет более уравнения, а возникло лишь отношение между первой функцией одной переменной величины и первой функцией другой переменной. Вместо px=y2 мы имеем p:2y или вместо 2ax-x2=y2 мы имеем a-x:y, что позднее стали обыкновенно обозначать как отношение dy/dx. Уравнение есть уравнение кривой, а это отношение, совершенно зависящее от него, выведенное (выше – согласно голому правилу) из него, есть, напротив, некоторое линейное отношение, которому пропорциональны известные линии; p:2y или a-x:y сами суть отношения прямых линий данной кривой, а именно отношения координат и параметра; но этим мы еще ничего не узнали. Мы желаем знать о других встречающихся в кривой линиях, что им присуще указанное отношение, желаем найти равенство двух отношений. Следовательно, является вопрос, во-вторых, какие прямые линии, определяемые природой кривой, находятся в таком отношении? Но это то, что уже ранее было известно, а именно что такое полученное указанным путем отношение есть отношение ординаты к подкасательной. Это нашли остроумным геометрическим способом древние; новые же изобретатели открыли только эмпирический прием, как придать уравнению кривой такой вид, чтобы получилось то первое отношение, о котором уже было известно, что оно равно отношению, содержащему в себе ту линию (здесь – подкасательную), которая подлежит определению. Частью это придание уравнению желаемого вида было задумано и проведено методически – дифференцирование, – частью же были изобретены воображаемые приращения координат и воображаемый, образованный из этих приращений и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного путем понижения степени уравнения, с отношением ординаты и подкасательной была представлена не как нечто эмпирическое, взятое лишь из давно знакомого, а как нечто доказанное. Однако это давно знакомое оказывается вообще (а самым неоспоримым образом в вышеуказанной форме правил) единственным побуждением к допущению – и, соответственно, единственным оправданием для допущения характеристического треугольника и указанной пропорциональности.

Лагранж отбросил эту симуляцию и вступил на подлинно научный путь; его методу мы обязаны тем, что усмотрели, в чем дело, так как он состоит в том, чтобы отделить друг от друга те два перехода, которые следует сделать для решения задачи, и рассматривать, и доказывать каждую из этих сторон отдельно. Одна часть этого решения – мы при более близком указании хода действия продолжаем пользоваться как примером элементарной задачей нахождения подкасательной – теоретическая или общая часть, а именно нахождение первой функции из данного уравнения кривой, регулируется особо; эта часть дает некоторое линейное отношение, следовательно, отношение прямых линий, встречающихся в системе определения кривой. Другая часть решения состоит в нахождении тех линий в кривой, которые находятся в указанном отношении. Это теперь осуществляется прямым путем (Théorie des Fonct. Anal., р. II, chap. II), т. е. не прибегая к характеристическому треугольнику, а именно не делая допущения о бесконечно малых дугах, ординатах и абсциссах и не давая им определений dy и dx, т. е. членов указанного отношения, и не устанавливая вместе с тем непосредственно значения равенства этого отношения с самими ординатой и подкасательной. Линия (равно как и точка) имеет свое определение лишь постольку, поскольку она составляет сторону некоторого треугольника, и определение точки имеется лишь в треугольнике. Это, скажем мимоходом, есть основное положение аналитической геометрии, которое приводит к координатам, или, что то же самое, в механике к параллелограмму сил, именно поэтому совершенно не нуждающемуся в многочисленных стараниях доказать его. Подкасательная теперь принимается за сторону треугольника, другими сторонами которого являются ордината и соответствующая ей касательная. Последняя как прямая линия имеет своим уравнением p=aq (прибавление +b бесполезно для определения и делается лишь ради излюбленной всеобщности); определение отношения p/q есть a, коэффициент величины q, который есть соответственная первая функция уравнения, но который должен вообще рассматриваться лишь как a=p/q, т. е., как сказано, как существенное определение прямой линии, составляющей касательную к данной кривой. Далее, поскольку берется первая функция уравнения кривой, она есть также определение некоторой прямой линии; далее, так как p, одна координата первой прямой линии, и y, ордината кривой, берутся как тождественные, так как, стало быть, принимается, что точка, в которой указанная принимаемая как касательная первая прямая линия соприкасается с кривой, есть вместе с тем начальная точка прямой линии, определяемой первой функцией кривой, то все дело в том, чтобы показать, что эта вторая прямая линия совпадает с первой, т. е. есть касательная, или, выражаясь алгебраически, показать, что так как yx и p=Fq, а теперь принимается, что y=p, и, стало быть fx=Fq, то и f’x=F’q. Что употребляемая как касательная прямая и та прямая линия, которая определена из уравнения его первой функцией, совпадают, что эта последняя есть, стало быть, касательная, это показывается с помощью приращения i абсциссы и определяемого через разложение функции приращения ординаты. Здесь, следовательно, также появляется пресловутое приращение; однако следует различать способ, каким оно вводится для только что указанной цели, и разложение функции по этому приращению от вышеупомянутого употребления приращения для нахождения дифференциального уравнения и для характеристического треугольника. Употребление, сделанное здесь, правомерно и необходимо; оно входит в круг геометрии, так как геометрическое определение касательной как таковой требует, чтобы между нею и кривой, с которой она имеет одну общую точку, не могло быть другой прямой линии, также проходящей через эту точку. Ибо с принятием этого определения качество касательной или не-касательной сводится к различию по величине, и касательной оказывается та линия, на которую приходится исключительно с точки зрения того определения, которое здесь важно, наибольшая малость. Эта на первый взгляд лишь относительная малость не содержит в себе ничего эмпирического, т. е. ничего зависящего от определенного количества как такового; она положена качественно природой формулы, если различие того момента, от которого находится в зависимости долженствующая быть сравниваемой величина, есть различие степени; так как последнее сводится к i и i2и так как i, которое ведь в конце концов должно означать некоторое число, следует представлять затем как дробь, то i2само по себе меньше, чем i, так что даже представление, что можно приписывать iлюбую величину, здесь излишне и даже неуместно. Именно поэтому доказательство большей малости не имеет ничего общего с бесконечно малым, и последнее следовательно отнюдь не должно появляться здесь.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация