Книга Искусство статистики. Как находить ответы в данных, страница 3. Автор книги Дэвид Шпигельхалтер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Искусство статистики. Как находить ответы в данных»

Cтраница 3

Как источник таких знаний данные имеют два основных ограничения. Во-первых, это почти всегда несовершенная мера того, что нас действительно интересует: простая просьба оценить, насколько люди были счастливы на прошлой неделе, по шкале от 0 до 10, вряд ли отражает эмоциональное благополучие нации. Во-вторых, все, что мы станем измерять, будет отличаться в разных местах, у разных людей и в разное время, и проблема состоит в умении извлечь осмысленную информацию из этих, на первый взгляд, случайных колебаний.

На протяжении веков статистика сталкивалась с этими двумя задачами и играла ведущую роль в стремлении ученых познать мир. Она дает основу для интерпретации данных (которые всегда несовершенны), чтобы отличить важные взаимосвязи от индивидуальных особенностей, которые делают нас уникальными. Однако мир постоянно меняется, появляются новые вопросы и новые источники данных, поэтому и статистика должна меняться.


Люди считали и измеряли всегда. Однако современная статистика как наука фактически зародилась в 1650-х годах, когда, как мы увидим в главе 8, понятие вероятности впервые было правильно представлено Блезом Паскалем и Пьером Ферма. С такой прочной математической основой прогресс заметно ускорился. В сочетании с данными о возрасте смерти людей теория вероятностей позволила рассчитывать пенсии и годовые платежи. Когда ученые поняли, как работать с разбросами в измерениях, это революционизировало астрономию. Энтузиасты Викторианской эпохи [15] были одержимы сбором сведений о человеческом теле (и о многом другом) и установили прочную связь между статистическим анализом и генетикой, биологией и медициной. Позже, в XX веке, статистика приблизилась к математике, и, к сожалению, для многих студентов и практиков эта область стала синонимом механического приложения определенных статистических инструментов, многие из которых были названы в честь эксцентричных статистиков – с ними мы познакомимся далее в книге.

Этот распространенный взгляд на статистику как на базовый «набор инструментов» в настоящее время сталкивается с серьезными проблемами. Во-первых, мы живем в век науки о данных, когда большие и сложные массивы данных собираются из самых обычных источников, таких как мониторинг дорожного движения, социальных сетей и покупок онлайн, а затем используются в качестве основы для технологических инноваций – например, оптимизации движения транспорта, целевой рекламы или систем рекомендации покупок. Алгоритмы, основанные на больших данных, мы рассмотрим в главе 6. Сегодня, чтобы стать специалистом по обработке данных, нужно не только изучать статистику, но и обладать навыками программирования, разработки алгоритмов, управления данными, а также разбираться в самом предмете.

Еще одну реальную угрозу традиционному взгляду на статистику представляет колоссальный рост количества проводимых исследований, особенно в биомедицине и социальных науках, в сочетании с требованием публикаций в высокорейтинговых журналах. Это привело к сомнениям в надежности определенной части научной литературы и утверждениям о невоспроизводимости многих «открытий» другими исследователями. Как, например, продолжающийся спор, может ли «поза силы» вызвать гормональные и другие изменения у человека [16]. На некорректном применении стандартных статистических методов лежит немалая доля вины за то, что известно как кризис воспроизводимости (или репликации) в науке.

В связи с растущей доступностью больших массивов данных и удобного программного обеспечения для их анализа может показаться, что необходимость в изучении статистических методов снижается. Однако крайне наивно так думать. Увеличение объема данных, рост количества и сложности научных исследований еще больше затрудняют процесс формулирования соответствующих выводов. Большее количество данных означает, что нам надо еще лучше осознавать, чего на самом деле стоят такие доказательства.

Например, интенсивный анализ массивов данных может повысить вероятность ложных открытий – как вследствие систематической ошибки, присущей источнику, так и в результате выполнения множества тестов, но сообщения только о тех из них, которые выглядят интересными, то есть так называемого слепого прочесывания данных. Чтобы иметь возможность критически относиться к опубликованным научным работам, а тем более к ежедневным сообщениям СМИ, нужно четко осознавать опасность такого избирательного подхода, понимать необходимость проверки утверждений независимыми специалистами и осознавать риск неправильной интерпретации результатов одного исследования вне контекста.

Все это можно объединить под термином «грамотность в работе с данными», который описывает не только способность проводить статистический анализ реальных проблем, но и умение понять и критически проанализировать любые выводы, сделанные другими на основе статистики. Повышение такой грамотности предполагает изменение методики обучения статистике.


Преподавание статистики

Целые поколения студентов страдали от сухих курсов статистики, основанных на изучении набора методов, применяемых в различных ситуациях, причем больше внимания в них уделялось математической теории, чем пониманию причин применения той или иной формулы, или проблемам, возникающим при попытке использовать данные для ответа на вопросы.

К счастью, все меняется. Наука о данных и грамотность в работе с ними требуют подхода, направленного на решение основных проблем, где применение конкретных статистических инструментов рассматривается лишь как один из компонентов цикла исследований. Цикл PPDAC (Problem, Plan, Data, Analysis, Conclusion) был предложен как модель решения проблем, которую мы будем использовать в этой книге [17]. Рис. 0.3 основан на примере Новой Зеландии, которая считается мировым лидером по преподаванию статистики в школах.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация