Для дискретных случайных переменных матожидание можно обозначить греческой буквой µ (мю), и оно будет суммой всех результатов, помноженных на вероятность каждого из них. В случае броска нашей условной монеты матожидание будет равно одной второй, и результата только два. А вообще, конечно, их может быть любое число, в том числе и бесконечное. Но их можно сосчитать и узнать средневзвешенную оценку, а она и называется матожиданием. Также его называют средним арифметическим. Но чтобы его посчитать, мы должны знать точные вероятности событий.
Для пущей ясности возьмём обычный (честно и точно сделанный) шестигранный кубик. Очевидно, что вероятность выпадения каждой цифры – одна шестая, граней ведь шесть. Сумма всех выпадений равна 1 + 2 + + 3 + 4 + 5 + 6 = 21. Берём от каждой одну шестую (надеюсь, сможете сами?), складываем вместе (или просто 21 делим на 6), получаем три с половиной. Значит, матожидание броска кубика – 3,5. Если мы много-много раз бросим кубик и посчитаем среднее, то получится число, близкое к 3,5. Понятно, что в случае броска одного кубика ожидать 3,5 бессмысленно, а вот в случае двух ждать семёрки – хорошая идея. И чем больше раз мы бросим кубик, тем ближе среднее будет к 3,5. Его и следует ждать математически, поэтому оно и называется матожидание.
Кроме среднего ещё есть медиана – это когда половина результатов эксперимента больше, а половина меньше этой цифры. Она часто используется в демографии. Например, зарплату по регионам корректнее сравнивать не среднюю, а медианную, потому что очень маленькие или (чаще) очень большие зарплаты, даже если таких всего несколько, заметно искажают реальную картину. А на медиану они не влияют.
Если нам потребуется матожидание непрерывных функций, то идея там точно такая же, но складывать надо интегралы. Слово страшное (сам его боюсь), но вообще это просто сумма площадей под графиком функции. Например, взять температуру – вероятность того, что термометр покажет у кипятка ровно 100 градусов, равна нулю, потому что он всегда может показать 100,001 или 99,999. Таких цифр бесконечное количество, и у каждой конкретной из них вероятность равна нулю. Но можно посмотреть, например, плотность вероятности у какого-либо отрезка.
9.6. Генеральная совокупность против выборки
Теперь пару слов о совокупности. Мы измеряли признаки всех возможных вариантов выпадения кубика, хорошо и годно всё посчитали. Но в реальности результаты экспериментов сосчитать трудно, потому что мы гораздо чаще имеем дело с выборками, а не со всей совокупностью результатов. Возьмём, например, дерево. Хотим мы оценить количество его листьев, берём пять веток и считаем на них среднее количество листьев. Потом умножаем их на количество веток, и у нас получится примерная (но неплохая) оценка количества листьев на дереве.
Так вот, реальное среднее количество листьев на ветке мы не знаем, а лишь приблизительно определили из пяти наших веток. Его принято обозначать не иксом, а иксом с чертой, и оно тем ближе к иксу, чем ближе количество отобранных нами веток к количеству веток на всём дереве. Если мы возьмём несколько отличающихся веток (а не только самые длинные, например), то наша выборка будет лучше отражать свойства всего дерева. Так и с людьми – если в исследуемой группе есть представители разных городов, профессий, возрастов, то выводы будут точнее и вернее, чем если опросить только вечно пьяных студентов МИРЭА.
В Америке был интересный казус с репрезентативностью выборки, когда журнал «Литерари Дайджест» опросил аж десять миллионов человек насчёт выборов президента. Это огромное количество респондентов: для достоверной статистики хватило бы двух-трех тысяч правильно собранных ответов. Журнал предсказал победу республиканцу Альфу Лэндону со значительным перевесом (60 на 40), а выборы выиграл демократ Франклин Рузвельт – как раз с таким же перевесом, но в обратную сторону. Дело в том, что большинство подписчиков журнала были республиканцами, а в попытке сгладить это несоответствие журнал рассылал бюллетени по телефонным книгам. Но не учёл забавного факта: телефоны тогда были доступны только среднему и высшему классу общества, а это были в основном республиканцы.
9.7. Дисперсия
Пока мы говорили лишь о средствах измерения основной тенденции, но ещё нам потребуется средство измерения её вариативности, иными словами, разброс её значений. Дисперсия случайной величины – это как она меняется от одного измерения до другого. Обозначается она как σ2, греческая сигма в квадрате. А просто сигма – это так называемое стандартное отклонение. Это корень из дисперсии.
Дисперсия – это сумма квадратов расстояний от каждого результата до среднего результата, делённая на их количество. Квадратов – потому что какие-то результаты отличаются от среднего в меньшую сторону, и чтобы при складывании отрицательных отклонений сумма не уменьшалась, придумали возводить разницу в квадрат и складывать уже квадраты отклонений (которые всегда положительны).
Тут плохо то, что дисперсия размерностью не совпадает с изучаемым явлением. Если мы измеряем сантиметры, то дисперсия окажется в квадратных сантиметрах. Поэтому из неё берут корень. Чтобы не лопнул мозг, вспомним про кубик. Так вот для шестигранника дисперсия получается 2,92 (сами посчитаете? Я вам помогу
[32]), ну а корень из этого – 1,71. То есть в среднем у нас выпадает 3,5, но разброс результатов от среднего равен 1,71. Чем больше этот разброс, тем больше квадраты расстояний до среднего, тем больше дисперсия.
Чем дисперсия больше, тем сильнее наша случайная величина варьируется.
Оценивать дисперсию всей совокупности по выборке не совсем правильно. Возвращаясь к нашему примеру с деревом, разброс между количеством листьев у выбранных нами веток будет, естественно, меньше, чем у всех веток дерева. Поэтому, чтобы узнать дисперсию всей совокупности, её делят не на n результатов, а на n-1, это называется коррекция смещения, придумал её в XIX веке Фридрих Бессель, ученик Гаусса.
На этом о дисперсии и оценках выборки всё. Там есть, конечно, ещё куча мелочей, но мы будем говорить о теорвере лишь в контексте инвестиций. Это именно та область, где нам нужен высокий доход, а вот дисперсия совершенно не нужна. Высокое матожидание дохода – добро, а высокая дисперсия – зло, потому что это риск, это неизвестность. Все финансовые теории в конечном счёте стремятся получить высокий доход с минимальным риском.
Жалко, что у них ничего не получается.
9.8. Корреляция, ковариация и регрессия
Ещё одна важная концепция – это ковариация. Это показатель того, насколько две переменные движутся вместе. Насколько похоже их поведение? Если эксперимент выдаёт нам икс и игрек и мы подмечаем, что когда икс высокий, то игрек тоже имеет свойство быть высоким, или наоборот, оба низкие, тогда ковариация будет положительной. Отрицательная ковариация – это когда при высоком икс игрек низкий, и наоборот – то есть они ходят в противоположном направлении.