Книга Теоретический минимум по Computer Science. Все что нужно программисту и разработчику, страница 27. Автор книги Владстон Феррейра Фило

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Теоретический минимум по Computer Science. Все что нужно программисту и разработчику»

Cтраница 27

Большинство операций с деревом требует обхода узлов по ссылкам, пока не будет найден конкретный узел. Чем больше высота дерева, тем длиннее средний путь между узлами и тем чаще приходится обращаться к памяти. Поэтому важно уменьшать высоту деревьев. Идеально сбалансированное двоичное дерево поиска можно создать из сортированного списка узлов следующим образом:

function build_balanced(nodes)

····if nodes is empty

········return NULL

····middle ← nodes.length/2

····left ← nodes.slice(0, middle — 1)

····right ← nodes.slice(middle + 1, nodes.length)

····balanced ← BinaryTree.new(root=nodes[middle])

····balanced.left ← build_balanced(left)

····balanced.right ← build_balanced(right)

····return balanced

Рассмотрим двоичное дерево поиска с n узлами и с максимально возможной высотой n. В этом случае оно похоже на связный список. Минимальная высота идеально сбалансированного дерева равняется log2 n. Сложность поиска элемента в дереве пропорциональна его высоте. В худшем случае, чтобы найти элемент, придется опускаться до самого нижнего уровня листьев. Поиск в сбалансированном дереве с n элементами, следовательно, имеет O(log n). Вот почему эта структура данных часто выбирается для реализации множеств (где предполагается проверка присутствия элементов) и словарей (где нужно искать пары «ключ — значение»).

Однако балансировка дерева — дорогостоящая операция, поскольку требует сортировки всех узлов. Если делать балансировку после каждой вставки или удаления, операции станут значительно медленнее. Обычно деревья подвергаются этой процедуре после нескольких вставок и удалений. Но балансировка от случая к случаю является разумной стратегией только в отношении редко изменяемых деревьев.

Для эффективной обработки двоичных деревьев, которые изменяются часто, были придуманы сбалансированные двоичные деревья (self-balancing binary tree) [48]. Их процедуры вставки или удаления элементов гарантируют, что дерево остается сбалансированным. Красно-черное дерево (red-black tree) — это хорошо известный пример сбалансированного дерева, которое окрашивает узлы красным либо черным цветом в зависимости от стратегии балансировки [49]. Красно-черные деревья часто используются для реализации словарей: словарь может подвергаться интенсивной правке, но конкретные ключи в нем по-прежнему будут находиться быстро вследствие балансировки.

AVL-дерево (AVL tree) — это еще один подвид сбалансированных деревьев. Оно требует немного большего времени для вставки и удаления элементов, чем красно-черное дерево, но, как правило, обладает лучшим балансом. Это означает, что оно позволяет получать элементы быстрее, чем красно-черное дерево. AVL-деревья часто используются для оптимизации производительности в сценариях, для которых характерна высокая интенсивность чтения.

Данные часто хранятся на магнитных дисках, которые считывают их большими блоками. В этих случаях используется обобщенное двоичное B-дерево (B-tree). В таких деревьях узлы могут хранить более одного элемента и иметь более двух дочерних узлов, что позволяет им эффективно оперировать данными в больших блоках. Как мы вскоре увидим, B-деревья обычно используются в системах управления базами данных.

Двоичная куча

Двоичная куча (binary heap) — особый тип двоичного дерева поиска, в котором можно мгновенно найти самый маленький (или самый большой) элемент. Эта структура данных особенно полезна для реализации очередей с приоритетом. Операция получения минимального (или максимального) элемента имеет сложность O(1), потому что он всегда является корневым узлом дерева. Поиск и вставка узлов здесь по-прежнему стоят O(log n). Кучи подчиняются тем же правилам размещения узлов, что и двоичные деревья поиска, но есть одно ограничение: родительский узел должен быть больше (либо меньше) обоих своих дочерних узлов (рис. 4.9).


Теоретический минимум по Computer Science. Все что нужно программисту и разработчику

Рис. 4.9. Узлы, организованные как двоичная куча max-heap (вверху) и двоичная куча min-heap (внизу) [50]


Обращайтесь к двоичной куче всегда, когда планируете часто иметь дело с максимальным (либо минимальным) элементом множества.

Граф

Граф (graph) аналогичен дереву. Разница состоит в том, что у него нет ни дочерних, ни родительских узлов (вершин) и, следовательно, нет корневого узла. Данные свободно организованы в виде узлов (вершин) и дуг (ребер) так, что любой узел может иметь произвольное число входящих и исходящих ребер.

Это самая гибкая из всех структур, она используется для представления почти всех типов данных. Например, графы идеальны для социальной сети, где узлы — это люди, а ребра — дружеские связи.

Хеш-таблица

Хеш-таблица (hash table) — это структура данных, которая позволяет находить элементы за O(1). Поиск занимает постоянное время вне зависимости от того, ищете вы среди 10 млн элементов или всего среди 10.

Так же, как массив, хеш для хранения данных требует предварительного выделения большого блока последовательной памяти. Но, в отличие от массива, его элементы хранятся не в упорядоченной последовательности. Позиция, занимаемая элементом, «волшебным образом» задается хеш-функцией. Это специальная функция, которая на входе получает данные, предназначенные для хранения, и возвращает число, кажущееся случайным. Оно интерпретируется как позиция в памяти, куда будет помещен элемент.

Это позволяет нам получать элементы немедленно. Заданное значение сначала пропускается через хеш-функцию. Она выдает точную позицию, где элемент должен находиться в памяти. Если элемент был сохранен, то вы найдете его в этой позиции.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация