Онлайн книга «Теоретический минимум по Computer Science. Все что нужно программисту и разработчику»
A: База данных заблокирована | 1: A —> B |
B: Есть возможность сохранить данные | 2:!(A AND C). |
C: Очередь запросов на запись полна | 3: C OR D. |
D: Кэш полон | 4: D —>!A. |
Далее создадим таблицу истинности со всеми возможными сочетаниями переменных (табл. 1.2). Дополнительные столбцы добавлены для проверки соблюдения технических требований.
Таблица 1.2. Таблица истинности для проверки четырех выражений
Все технические требования удовлетворяются в состояниях с 9-го по 11-е и с 13-го по 15-е. В этих состояниях A = False, а значит, база данных не может быть заблокирована никогда. Обратите внимание, что кэш не заполнен лишь в состояниях 10 и 14.
Чтобы проверить, чему вы научились, попробуйте разгадать загадку «Кто держит зебру?» [13]. Это известная логическая задача, ошибочно приписываемая Альберту Эйнштейну. Говорят, что только 2 % людей могут ее решить, но я сильно сомневаюсь. Используя большую таблицу истинности и правильно упрощая и объединяя логические высказывания, вы ее разгадаете, я уверен в этом.
Всегда, имея дело с ситуациями, допускающими один из двух вариантов, помните: их можно смоделировать с помощью логических переменных. Благодаря этому очень легко получать выражения, упрощать их и делать выводы.
А теперь давайте взглянем на самое впечатляющее применение логики: проектирование электронно-вычислительных машин.
Группы логических переменных могут представлять числа в двоичной форме [14]. Логические операции в случае с двоичными числами могут объединяться для расчетов. Логические вентили выполняют логические операции с электрическим током. Они используются в электрических схемах, выполняющих вычисления на сверхвысоких скоростях.
Логический вентиль получает значения через входные контакты, выполняет работу и передает результат через выходной контакт. Существуют логические вентили AND, OR, XOR и т. д. Значения True и False представлены электрическими сигналами с высоким и низким напряжением соответственно. Сложные логические выражения можно вычислять таким образом практически мгновенно. Например, электрическая схема на рис. 1.6 суммирует два числа.
Давайте посмотрим, как работает эта схема. Не поленитесь, проследите за ходом выполнения операций, чтобы понять, как устроена магия (рис. 1.7).
Рис. 1.6. Схема суммирования двухразрядных чисел, передаваемых парами логических переменных (A1A0 и B1B0) в трехразрядное число (S2S1S0)
Рис. 1.7. Вычисление 2 + 3 = 5 (в двоичном формате это 10 + 11 = 101)
Чтобы воспользоваться преимуществом этого быстрого способа вычислений, мы преобразуем числовые задачи в двоичную (логическую) форму. Таблицы истинности помогают моделировать и проверять схемы. А булева алгебра — упрощать выражения и, следовательно, схемы.
Когда-то логические вентили изготавливали с использованием больших, неэффективных и дорогих электрических реле. Когда на смену реле пришли транзисторы, стало возможным массовое производство логических вентилей. Люди находили все новые и новые способы делать транзисторы меньше [15]. Принципы работы современного центрального процессора (ЦП) по-прежнему построены на булевой алгебре. Современный ЦП — это просто схема, которая состоит из миллионов микроскопических контактов и логических вентилей, управляющих электрическими потоками информации.