Книга WTF? Гид по бизнес-моделям будущего, страница 58. Автор книги Тим О’Рейли

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «WTF? Гид по бизнес-моделям будущего»

Cтраница 58

Этот пример также дает представление о том, как работают модели машинного обучения. В любой заданной модели есть множество векторов функций, создающих n-мерное пространство, в которое классификатор или распознаватель помещает каждый новый элемент, требующий обработки. Несмотря на фундаментальные исследования, направленные на разработку совершенно новых алгоритмов машинного обучения, основная часть тяжелой работы в прикладном механическом обучении заключается в определении функций, которые с наибольшей вероятностью могут предугадать желаемый результат.

Однажды я спросил Джереми Ховарда, бывшего главного технического директора Kaggle, компании, которая проводит соревнования по краудсорсинговому анализу данных, что отличает победителей от проигравших. (Сам Джереми пять раз становился победителем, прежде чем присоединиться к Kaggle.)«Креативность, – сказал он мне. – Все используют одни и те же алгоритмы. Разница заключается в том, какие функции вы хотите добавить в модель. Вы ищете неординарные идеи о том, что может стать предиктивным». (Однако Питер Норвиг отметил, что граница, где необходимо проявить творчество, уже сдвинулась: «Безусловно, это было верно в те времена, когда победителями Kaggle становились такие технологии, как алгоритмы Random Forest и методы опорных векторов. Что касается сетей, использующих технологию глубинного обучения, в них гораздо чаще используется каждая доступная функция, поэтому креативность проявляется в выборе архитектуры модели и в настройке гиперпараметров, а не в выборе функций».)

Возможно, самым важным вопросом для машинного обучения, впрочем, как и для любой новой технологии, является то, какие проблемы мы должны решить в первую очередь. Джереми Ховард стал соучредителем Enlitic, компании, которая использует машинное обучение для анализа снимков диагностической радиологии, а также для сканирования многих других видов клинических данных для определения вероятности и актуальности проблемы, которую врачу-человеку следует рассмотреть более подробно. Учитывая, что ежегодно в Соединенных Штатах делается более 300 миллионов рентгеновских снимков, можно предположить, насколько возможности машинного обучения способны снизить стоимость и улучшить качество медицинского обслуживания.

Компания DeepMind, принадлежащая Google, также работает в сфере здравоохранения, помогая Национальной службе здравоохранения Великобритании повысить эффективность ее работы и ее способность диагностировать различные состояния. Расположенная в Швейцарии компания Sophia Genetics каждый месяц сравнивает данные о 6000 пациентов для того, чтобы найти наилучшее лечение от рака, причем эта цифра ежемесячно увеличивается на десятки.

Джефф Хаммербачер, который работал на Уолл-стрит, прежде чем возглавить команду по обработке данных в Facebook, однажды сказал: «Лучшие умы моего поколения думают о том, как заставить людей нажимать на рекламу. Это отстой». Джефф ушел из Facebook и теперь выступает в двух ипостасях: главного научного сотрудника и соучредителя крупной компании по обработке данных Cloudera и преподавателя в медицинском колледже Icahn School of Medicine at Mount Sinai в Нью-Йорке, где он руководит Hammer Lab – командой разработчиков программного обеспечения и специалистов по обработке данных, пытающихся понять, как иммунная система борется с раком.

Выбор, для решения каких проблем мы будем применять суперсилу нашего нового цифрового «персонала», в конечном счете зависит именно от нас. Мы инициируем гонку джиннов, стремящихся исполнить наши желания. О чем мы их попросим?

Глава 9. «Пылкий темперамент преодолеет все холодные правила»

В начале 2017 года я выступал с речью на собрании министров из организации экономического сотрудничества и развития (ОЭСР) и стран Большой двадцатки по вопросу цифрового будущего. Один из министров Германии за обедом уверенно утверждал: «Единственная причина, по которой компания Uber успешна, заключается в том, что она не должна следовать правилам». К счастью, мне не пришлось самому задавать очевидный вопрос. Один из чиновников ОЭСР спросил: «Вы когда-нибудь пользовались Uber?» «Нет, – признался критик, – у меня есть собственная машина и водитель».

Если вы когда-нибудь пользовались услугами Uber или Lyft, вы по опыту знаете, что это намного лучше, чем такси в большинстве стран. Водители вежливы и дружелюбны; все они используют карты Google или Waze, чтобы определить наиболее эффективный способ добраться до места назначения; поскольку отсутствует счетчик, вы можете заранее оценить стоимость поездки и получить подробный электронный чек в течение нескольких секунд после того, как прибудете на место; и вам никогда не придется возиться с наличными или кредитной картой для оплаты. Но самое главное – у вас есть автомобиль по вызову, который заберет вас, где бы вы ни были, как и у этого немецкого министра, только гораздо дешевле.

На протяжении многих лет я вел подобные беседы с людьми, отвечающими за регулирование новых технологий или участвующими в судебных разбирательствах по вопросам новых технологий. Например, еще в 2005 году во время дискуссии на тему поиска Google Книги меня попросили стать оппонентом адвоката гильдии авторов, которая подала в суд на Google за сканирование книг для создания поискового индекса их содержимого. В поисковом индексе были показаны только фрагменты содержания книг, так же как и фрагменты текста веб-сайтов, которые отображаются в обычном индексе Google. Содержание целиком можно было просматривать только с разрешения издателя, за исключением книг, которые считаются общественным достоянием.

«Сканирование книг означает, что они делают несанкционированную копию, – сказала адвокат. – Они крадут наш контент!» Когда я пытался объяснить, что создание копии – это необходимый шаг в создании поисковой системы и что сервис поиска Google Книги работает точно так же, как и поиск в Сети, меня осенило, что она понятия не имеет, как работает поиск Google. «Вы когда-нибудь пользовались Google?» – спросил я. «Нет, – ответила она, добавив (я не шучу): – Но люди в моем офисе пользовались».

Непредвиденные последствия того, что люди попросту пытаются применить старые правила и классификации к радикально новой модели, подчеркивают необходимость более глубокого понимания технологий со стороны регулирующих органов и проявления нового мышления как с их стороны, так и со стороны компаний, которые они стремятся регулировать. Компании Кремниевой долины, полные решимости произвести «революцию», часто рассматривают регулирующие органы как врагов. Они выступают против правил или просто игнорируют их. «Пылкий темперамент преодолевает все холодные правила», как выразилась шекспировская Порция в «Венецианском купце».

Регулирование также является темой особой остроты в сегодняшней политике. «У нас его слишком много», – говорит одна сторона. «Нам нужно больше», – утверждает другая. Возможно, истинная проблема состоит в том, что у нас просто не тот тип регулирования: гора документов с правилами, неэффективные процессы и весьма ограниченные возможности корректировать правила или процессы, когда мы неизбежно обнаруживаем их нежелательные последствия.

Переосмысление регулирования

Представим регулирование в более широком контексте. Электроника вашего автомобиля регулирует топливно-воздушную смесь в двигателе, чтобы найти оптимальный баланс между эффективностью топлива и минимальными выбросами. Автопилот самолета регулирует огромное количество факторов, необходимых для того, чтобы удерживать самолет в воздухе и двигаться в правильном направлении. Кредитные компании контролируют и регулируют платежи, чтобы выявлять мошенничество и следить, чтобы вы не превысили свой кредитный лимит. Врачи регулируют дозировку лекарств, которые они прописывают нам, иногда в порядке общих рекомендаций, иногда с особой строгостью, как в случае с химиотерапией, призванной уничтожить раковые клетки, при этом сохранив нормальные клетки в живых, или в случае с анестезией, которая поддерживает пациента в бессознательном состоянии во время операции, в то время как жизненно важные процессы продолжают происходить. Поставщики интернет-услуг и корпоративные почтовые системы контролируют доставляемую клиентам почту, в меру своих возможностей отфильтровывая спам и вредоносные программы. Поисковые системы и социальные сети регулируют поисковую выдачу и рекламные объявления, которые они нам показывают, делая все возможное, чтобы дать нам больше, чем мы хотим увидеть.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация