Алгоритмическая проверка фактов не заменяет человеческую оценку. Она усиливает нашу способность ее проводить, подобно тому как оборудование для земельных работ облегчает физический труд. Сигналы, которые она использует, аналогичны тем, которые использовал бы человек-фактчекер.
Указываются ли в статье или в графике какие-либо источники? Если источник не указан, то еще не факт, что статья является ложной, но вероятность этого увеличивается, и следует продолжить ее изучение. Как правило, фальшивая новость не ссылается ни на какие источники. К примеру, когда я пытался развенчать новость, присланную мне моим братом, фальшивую карту, на которой был запечатлен якобы более высокий уровень нарушений на избирательных участках, голосовавших за демократов, мне не удалось найти никаких источников информации, на основе которых была составлена карта. Однако в ходе своих поисков я нашел серию визуализаций, составленных новостным порталом Business Insider, которые отображали совершенно иную картину. В отличие от карты моего брата, в официальной публикации был указан источник использованных в ней данных, криминальная база данных ФБР.
Действительно ли в источниках говорится то же самое, что и в статье? Вполне возможно, новостной портал Business Insider стал бы утверждать, что данные, использованные в его статье, взяты из базы ФБР, но там таких данных не было, там данные были другими. Мало кто, как я, отслеживает цепочку, чтобы добраться до первоначального источника. Многие пропагандистские новостные сайты полагаются на это нежелание докапываться, чтобы распространять ложную информацию. Проверка источников информации на всем пути до первоначального источника – это то, что компьютеры делают намного лучше, чем люди.
Авторитетны ли эти источники? На протяжении многих лет корпорация Google использовала множество способов оценки качества поиска. Как долго существует сайт? Как часто на него ссылаются другие сайты, которые неоднократно были признаны авторитетными? Большинство людей сочли бы ФБР авторитетным источником данных национальной статистики по преступности в США.
Если статья ссылается на количественные данные, правильно ли она их использует с математической точки зрения? Например, любой, кто хоть немного понимает в статистике, признает, что абсолютное число преступлений без учета плотности населения – это совершенно бессмысленная информация. Да, в городах-миллионниках, таких как Нью-Йорк или Чикаго, происходит больше преступлений, чем в какой-нибудь деревне в штате Монтана с населением в сто человек. Вот почему данные ФБР, на которые ссылается статья новостного портала Business Insider, которая привела статистику в сопоставимый вид, чтобы показать количество преступлений, совершаемых на 100 000 человек, по своей сути были для меня более правдоподобными, чем фальшивые карты избирательных участков, которые подтолкнули меня на эти поиски истины. Опять же, математические расчеты весьма успешно производятся при помощи компьютера.
Подтверждают ли источники, если таковые имеются, информацию в статье? Если между материалом и его источниками существует несоответствие, это может сигнализировать о ложности сообщения. Еще до выборов социальная сеть Facebook выпустила обновление для борьбы с тем, что они называют «кликбейтами». Компания Facebook изучила тысячи постов, чтобы определить тип языка, который обычно используется в заголовках, заманивающих пользователей обещаниями, которые не соответствуют содержанию этой статьи, а затем разработали алгоритм для выявления и понижения в приоритете показа тех статей, которые продемонстрировали несоответствие. Проблема соответствия статей и их источников – весьма схожая.
Существует ли несколько независимых источников, подтверждающих тезисы статьи? Это давняя техника, которой пользовались репортеры в те дни, когда поиск истины по праву занимал центральное место в новостях. Новость, какой бы пикантной она ни была, никогда не была бы опубликована на основании информации только от одного источника. Поиск нескольких подтверждающих информацию источников – это то, что компьютеры могут делать очень хорошо. Мало того что они могут находить несколько источников, они также могут определить, какой из них был первым, а какие из них предоставляют дублированный контент, сколько времени просуществовал сайт или аккаунт пользователя, с которого был размещен материал, как часто он публикует подобные посты, и даже могут определить местоположение автора контента.
Пользователи интернет-СМИ вряд ли переучатся, чтобы действовать подобным же образом. В особенности когда речь о статье, которая подтверждает убеждения, мало кто ищет другие источники той информации, которые не соответствуют этим убеждениям. Одна из моих сестер прислала мне статью о «легализации детской проституции» в Калифорнии после прочтения материала в журнале The Washington Examiner. «Я думаю, возможно, поэтому некоторым порядочным людям не нравится Калифорния», – писала она. Я прочитал законопроект по этому поводу и опровержения данных материала из других источников в средствах массовой информации. На самом деле законопроект штата Калифорния говорит о том, что лица, не достигшие восемнадцати лет, занимающиеся проституцией, не будут рассматриваться как преступники, но могут быть заключены под стражу и взяты под опеку суда. Учитывая сведения из оригинального источника, теоретически алгоритм может сравнить краткое содержание статьи с оригиналом или сравнить несколько версий одного и того же события и отметить несоответствия.
Кроме того, что пользователи «избираются» контентом, который подтверждает их убеждения и скомпонован так, чтобы отвечать их интересам, они еще чрезмерно жаждут кликов и лайков. Джон Бортуик, генеральный директор компании Betaworks, описал поведение пользователя, которое способствует распространению фальшивых новостей. «Хакатоны используют преимущества деконтекстуальной структуры новостных лент в режиме реального времени, – отмечает он. – Вы видите твит с провокационным заголовком на известном новостном сайте, возможно, с инфографическим изображением – и вы делаете ретвит. Возможно, вы собираетесь прочитать эту историю, возможно, вы просто хотите твитнуть что-то интересное и провокационное, возможно, вы найдете источник информации, возможно, нет. Одним из простейших алгоритмических действий, которое могли бы сделать Facebook и Twitter, это спросить людей: «Вы действительно хотите поделиться этой ссылкой? Кажется, вы не прочитали статью».
Поскольку алгоритмы четко следуют правилам, они хорошо замечают вещи, которые ускользают от внимания людей. Ранее в этой главе я процитировал высказывания Карол Кадуолладр о Google и сайтах, отрицающих существование холокоста. В еще одной статье, в которой Кадуолладр рассмотрела способы понизить фальшивые новости в результатах поисковой выдачи, приводилась цитата, приписываемая гуру в области поисковых систем, Дэнни Салливану, в которой говорилось, что Google изменил свои алгоритмы, «чтобы продвигать популярные результаты поисковой выдачи, вместо авторитетных. По той причине, что это принесет Google больше денег».
Статья выглядела авторитетной вдвойне – она появилась в авторитетной газете The Guardian, и в ней приводилась цитата эксперта по поиску Google, которого я знаю и уважаю. Но что-то не давало мне покоя. Хотя в авторской статье присутствовали другие ссылки, не было ссылки на статью, из которой, предположительно, была взята цитата Дэнни Салливана. Поэтому я отправил Дэнни письмо по электронной почте. Он сказал мне, что не только не говорил, что Google изменил свой алгоритм, чтобы увеличить свою прибыль, но и проинформировал газету The Guardian после того, как вышла статья, что его цитата была использована некорректно. Статью так и не исправили, с сожалением сказал он.